Skip to main content
Log in

Electrochemical Behavior of Si(IV) on the Mo Electrode in the CaCl2–CaF2–CaO–SiO2 Melt

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

This work concerns a study on investigating the electrochemical behaviors of silicon using the molybdenum electrode in molten CaCl2–CaF2–CaO–SiO2 at 1023 K, by means of linear scan voltammetry, square wave voltammetry, chronoamperometry, open circuit chronopotentiometry, reversal chronopotentiometry and polarization curve. The results based on the linear scan voltammetry showed that reduction of Si(IV) in CaCl2–CaF2–CaO–SiO2 melt proceeds in a single step exchanging four electrons, which is a reversible process with diffusion-controlled mass transfer, and the diffusion coefficient for the reduction process of Si(IV) ions in CaCl2–CaF2–CaO (3.68 wt %)–SiO2 (4 wt %) is about 1.11 × 10−4 cm2 s−1, at 1023 K. The reversibility of the Si(IV)/Si redox couple on the molybdenum electrode is confirmed via linear scan voltammetry. Chronoamperometric measurements indicated that the I–t transients of Si(IV) follow instantaneous nucleation with varied the applied overpotential. Furthermore, the sample deposited on the molybdenum electrode using potentiostatic electrolysis was identified by X-ray diffraction (XRD). The XRD result indicates that the obtained deposits were Si and MoSi2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nohira, T., Ido, A., Shimao, T., Yang, X., Yasuda, K., Hagiwara, R., and Homma, T., A new electrolytic production process of silicon using liquid Zn alloy cathode in molten salt, Ecs Trans., 2016, vol. 75, no. 15, pp. 17.

    Article  CAS  Google Scholar 

  2. Ergül, E., Karakaya, I., and Erdoğan, M., Electrochemical decomposition of SiO2 pellets to form silicon in molten salts, J. Alloys Compd., 2011, vol. 509, no. 3, pp. 899.

    Article  CAS  Google Scholar 

  3. Mazumder, B., Silicon and It’s Compounds, Science Publ., 2001.

  4. Cho, S.K., Fan, F.R., and Bard, A.J., Electrodeposition of crystalline and photoactive silicon directly from silicon dioxide nanoparticles in molten CaCl2, Angew. Chem. Int. Ed., 2012, vol. 124, no. 51, pp. 12740.

    Article  CAS  Google Scholar 

  5. Woditsch, P. and Koch, W., Solar grade silicon feedstock supply for PV industry, Sol. Energy Mat. Sol. C, 2002, vol. 72, nos. 1–4, p. 11.

    Article  CAS  Google Scholar 

  6. Loutzenhiser, P.G., Tuerk, O., and Steinfeld, A., Production of Si by vacuum carbothermal reduction of SiO2 using concentrated solar energy, J. Org. Mater., 2010, vol. 62, no. 9, pp. 49.

    CAS  Google Scholar 

  7. Müller, A., Ghosh, M., Sonnenschein, R., and Woditsch, P., Silicon for photovoltaic application, Mater. Sci. Eng. B, 2006, vol. 134, nos. 2–3, p. 257.

    Article  CAS  Google Scholar 

  8. Chen, G.Z., Fray, D.J., and Farthing, T.W., Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 2000, vol. 407, no. 6802, pp. 361.

    Article  CAS  PubMed  Google Scholar 

  9. Bukatova, G.A., Kuznetsov, S.A., and Gaune, E.M., Electrochemical synthesis of rare-Earth metal (Eu, Nd) borides in molten salts, Russ. J. Electrochem., 2007, vol. 43, no. 8, pp. 929.

    Article  CAS  Google Scholar 

  10. Liu, K., Tang, H.-B., Pang, J.-W., Liu, Y.-L., Feng, Y.-X., Chai, Z.-F., and Shi, W.-Q., Electrochemical properties of uranium on the liquid gallium electrode in LiCl–KCl eutectic, J. Electrochem. Soc., 2016, vol. 163, no. 9, p. D554.

    Article  CAS  Google Scholar 

  11. Yan, Y.-D., Zhang, M.-L., Han, W., Cao, D.-X., Yuan, Y., Xue, Y., and Chen, Z., Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl–KCl melts, Electrochim. Acta, 2008, vol. 53, no. 8, pp. 3323.

    Article  CAS  Google Scholar 

  12. Castrillejo, Y., Bermejo, M.R., Barrado, E., and Martinez, A.M., Electrochemical behaviour of erbium in the eutectic LiCl-KCl at W and Al electrodes, Electrochim. Acta, 2006, vol. 51, no. 10, pp. 1941.

    Article  CAS  Google Scholar 

  13. Castrillejo, Y., Fernandez, P., Medina, J., Hernandez, P., and Barrado, E., Electrochemical extraction of samarium from molten chlorides in pyrochemical processes, Electrochim. Acta, 2011, vol. 56, no. 24, pp. 8638.

    Article  CAS  Google Scholar 

  14. Liu, Y.-L., Yan, Y.-D., Han, W., Zhang, M.-L., Yuan, L.-Y., Liu, K., Ye, G.-A., He, H., Chai, Z.-F., and Shi, W.-Q., Extraction of thorium from LiCl–KCl molten salts by forming Al–Th alloys: a new pyrochemical method for the reprocessing of thorium-based spent fuels, RSC Adv., 2013, vol. 3, no. 45, pp. 23539.

    Article  CAS  Google Scholar 

  15. Liu, Y.-L., Yan, Y.-D., Han, W., Zhang, M.-L., Yuan, L.-Y., Lin, R.-S., Ye, G.-A., He, H., Chai, Z.-F., and Shi, W.-Q., Electrochemical separation of Th from ThO2 and Eu2O3 assisted by AlCl3 in molten LiCl–KCl, Electrochim. Acta, 2013, vol. 114, p. 180.

    Article  CAS  Google Scholar 

  16. Novoselova, A.V. and Smolenskii, V.V., Electrochemical study of the properties of Nd(III) and Nd(II) ions in molten LiCl-KCl-CsCl eutectic and individual CsCl, Russ. J. Electrochem., 2013, vol. 49, no. 10, pp. 931.

    Article  CAS  Google Scholar 

  17. Barrado, E., Castrillejo, Y., Bermejo, M.R., and Rosa, F.D.L., Cathodic behaviour of europium(III) on glassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in the eutectic LiCl-KCl, J. Electroanal. Chem., 2007, vol. 603, no. 1, pp. 81.

    Article  CAS  Google Scholar 

  18. Gibilaro, M., Massot, L., Chamelot, P., Cassayre, L., and Taxil, P., Electrochemical extraction of europium from molten fluoride media, Electrochim. Acta, 2009, vol. 55, no. 1, pp. 281.

    Article  CAS  Google Scholar 

  19. Nohira, T., Yasuda, K., and Ito, Y., Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon, Nat. Mater., 2003, vol. 2, no. 6, pp. 397.

    Article  CAS  PubMed  Google Scholar 

  20. Jin, X.-B., Gao, P., Wang, D.-H., Hu, X.-H., and Chen, G.-Z., Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride, Angew. Chem., 2004, vol. 43, no. 6, pp. 733.

    Article  CAS  Google Scholar 

  21. Yang, X., Ji, L., Zou, X., Lim, T., Zhao, J., Yu, E.T., and Bard, A.J., Effective manufacturing of Silicon solar cells: electrodeposition of high-quality Si films in a CaCl2-based molten salt, Angew. Chem., 2017, vol. 56, no. 74 p. 15078.

    Article  CAS  Google Scholar 

  22. Cai, J., Luo, X.-T., Haarberg, G.M., Kongstein, O.E., and Wang, S.L., Electrorefining of metallurgical grade silicon in molten CaCl2 based salts, J. Electrochem. Soc., 2012, vol. 159, no. 3, p. D155.

    Article  CAS  Google Scholar 

  23. Elwell, D. and Rao, G.M., Mechanism of electrodeposition of silicon from K2SiF6-flinak, Electrochim. Acta, 1982, vol. 27, no. 6, pp. 673.

    Article  CAS  Google Scholar 

  24. Rao, G.M., Elwell, D., and Feigelson, R.S., Electrowinning of silicon from K2SiF6-molten fluoride systems, J. Electrochem. Soc., 1980, vol. 127, no. 9, pp. 1940.

    Article  CAS  Google Scholar 

  25. Cohen, U., Silicon epitaxial growth by electrodeposition from molten fluorides, J. Electrochem. Soc., 1976, vol. 123, no. 3, pp. 381.

    Article  CAS  Google Scholar 

  26. Boen, R. and Bouteillon, J., The electrodeposition of silicon in fluoride melts, J. Appl. Electrochem., 1983, vol. 13, no. 3, pp. 277.

    Article  CAS  Google Scholar 

  27. Cai, Z.-Y., Li, Y.-G., He, X.-F., and Liang, J.-L., Electrochemical behavior of silicon in the (NaCl–KCl–NaF–SiO2) molten salt, Metall. Mater. Trans. B, 2010, vol. 41, no. 5, pp. 1033.

    Article  CAS  Google Scholar 

  28. Hu, Y.-J., Wang, X., Xiao, J.-S., Hou, J.-G., Jiao, S.-Q., and Zhu, H.-M., Electrochemical behavior of silicon(IV) ion in BaF2–CaF2–SiO2 melts at 1573 K, J. Electrochem. Soc., 2013, vol. 160, no. 3, p. D81.

    Article  CAS  Google Scholar 

  29. Bieber, A.L., Massot, L., Gibilaro, M., Cassayre, L., Taxil, P., and Chamelot, P., Silicon electrodeposition in molten fluorides, Electrochim. Acta, 2012, vol. 62, p. 282.

    Article  CAS  Google Scholar 

  30. Sokhanvaran, S. and Barati, M., Electrochemical behavior of silicon species in cryolite melt, J. Electrochem. Soc., 2014, vol. 161, no. 1, p. E6.

    Article  CAS  Google Scholar 

  31. Haarberg, G.M., Famiyeh, L., Martinez, A.M., and Osen, K.S., Electrodeposition of silicon from fluoride melts, Electrochim. Acta, 2013, vol. 100, p. 226.

    Article  CAS  Google Scholar 

  32. Maeda, K., Yasuda, K., Nohira, T., Hagiwara, R., and Homma, T., Silicon electrodeposition in water-Soluble KF-KCl molten salt: investigations on the reduction of Si (IV) ions, J. Electrochem. Soc., 2015, vol. 162, no. 9, p. D444.

    Article  CAS  Google Scholar 

  33. Galyus, Z., Theoretical Basics of Electrochemical Analysis, Mir Publishing House, 1974.

  34. Kuznetsova, S.V., Dolmatov, V.S., and Kuznetsov, S.A., Voltammetric study of electroreduction of silicon complexes in a chloride-fluoride melt, Russ. J. Electrochem., 2009, vol. 45, no. 7, pp. 742.

    Article  CAS  Google Scholar 

  35. Xu, L., Xiao, Y.-P., Xu, Q., Sandwijk, A.V., Li, J.-D., Zhao, Z., and Yang, Y.-X., Electrochemical behavior of zirconium in molten LiF–KF–ZrF4 at 600°C, RSC Adv., 2016, vol. 6, no. 87, pp. 84472.

    Article  CAS  Google Scholar 

  36. Liu, Y.-L., Yuan, L.-Y., Ye, G.-A., Zhang, M.-L., He, H., Tang, H.-B., Lin, R.-S., and Shi, W.-Q., Electrochemical extraction of samarium from LiCl-KCl melt by forming Sm–Zn alloys, Electrochim. Acta, 2014, vol. 120, p. 369.

    Article  CAS  Google Scholar 

  37. Chamelot, P., Taxil, P., and Lafage, B., Voltammetric studies of tantalum electrodeposition baths, Electrochim. Acta, 1994, vol. 39, no. 17, pp. 2571.

    Article  CAS  Google Scholar 

  38. Luo, L.-X., Liu, Y.-L., Liu, N., Liu, K., Yuan, L.-Y., Chai, Z.-F., and Shi, W.-Q., Electroreduction-based Tb extraction from Tb4O7 on different substrates: understanding Al–Tb alloy formation mechanism in LiCl–KCl melt, RSC Adv., 2015, vol. 5, no. 85, pp. 69134.

    Article  CAS  Google Scholar 

  39. Serrano, K. and Taxil, P., Electrochemical reduction of trivalent uranium ions in molten chlorides, J. Appl. Electrochem., 1999, vol. 29, no. 4, pp. 497.

    Article  CAS  Google Scholar 

  40. Allongue, P. and Souteyrand, E., Experimental investigation of charge transfer at the semiconductor/electrolyte junction, Electrochim. Acta, 1992, vol. 37, no. 5, pp. 781.

    Article  CAS  Google Scholar 

  41. Zhou, B.Z. and Chen, Y.Y., Basic Tutorial of Electrode Process Dynamics, Wu Han: Wuhan University Press, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jidong Li.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 5, pp. 558–567.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ren, H., Yin, X. et al. Electrochemical Behavior of Si(IV) on the Mo Electrode in the CaCl2–CaF2–CaO–SiO2 Melt. Russ J Electrochem 55, 392–400 (2019). https://doi.org/10.1134/S1023193519050082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519050082

Keywords

Navigation