Skip to main content
Log in

Porous LiMn2O4 Nano-Microspheres as Durable High Power Cathode Materials for Lithium Ion Batteries

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Porous LiMn2O4 spheres was easily fabricated with MnCO3 spheres and MnO2 as precursors and characterized in terms of structure and performance as the cathode of a lithium ion battery. The presence of pores with the average size of about 50 nm throughout the whole LiMn2O4 microspheres was confirmed by scanning electron microscope (SEM) and N2 adsorption-desorption measurements. The electrochemical tests show that the synthesized product has smaller electrochemical polarization, faster Li-ion intercalation kinetics and higher electrochemical stability. It exhibits excellent rate capability and cyclic stability: delivering a reversible discharge capacity of 71 mA h g−1 at a 5 C rate and yielding a capacity retention of over 92% at a rate of 0.5 C after 100 cycles. The superior performance of the synthesized product is attributed to its special structure: porous secondary spheres particles consisting of primary single-crystalline nanoparticles. The nanoparticle reduces the path of Li-ion diffusion and increases the reaction sites for lithium insertion/extraction, the pores provide room to buffer the volume changes during charge-discharge and the single crystalline nanoparticle endows the spinel with the best stability. Taking the excellent electrochemical performance and facile synthesis into consideration, the presented porous LiMn2O4 spheres could be a competitive candidate cathode material for high-performance lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farmann, A. and Sauer, D.U., A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles, J. Power Sources, 2016, vol. 329, p. 123.

    Article  CAS  Google Scholar 

  2. Lin, D., Liu, Y., and Cui, Y., Reviving the lithium metal anode for high-energy batteries, Nature Nanotech., 2017, vol. 12, p. 194.

    Article  CAS  Google Scholar 

  3. Mao, F.X., Guo, W., and Ma, J.M., Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes, Rsc. Adv., 2015, vol. 5, p. 105248.

    Article  CAS  Google Scholar 

  4. Xu, G., Liu, J., Zhang, C., Cui, G., and Chen, L., Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures, J. Mater. Chem. A, 2015, vol. 3, p. 4092.

    Article  CAS  Google Scholar 

  5. Liu, Q.L., Wang, S.P., Tan, H.B., Yang, Z.G., Zeng, J., et al., Preparation and doping mode of doped LiMn2O4 for Li-ion batteries, Energies, 2013, vol. 6, p. 1718.

    Article  CAS  Google Scholar 

  6. Li, B., Wang, Y., Rong, H., Wang, Y., Liu, J., Xing, L., Xu, M., and Li, W., A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn2O4/graphite battery, J. Mater. Chem. A, 2013, vol. 1, p. 12954.

    Article  CAS  Google Scholar 

  7. Yang, L.D., Xie, J., Cao, G.S., and Zhao, X.B., Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries, Adv. Funct. Mater., 2011, vol. 21, p. 348.

    Article  CAS  Google Scholar 

  8. Wang, J.G., Jin, D.D., Liu, H.Y., Zhang, C.B., Zhou, R., Shen, C., Xie, K.Y., and Wei, B.Q., All-manganese-based Li-ion batteries with high rate capability and ultralong cycle life, Nano Energy, 2016, vol. 22, p. 524.

    Article  CAS  Google Scholar 

  9. Lee, S., Cho, Y., Song, H.K., Lee, K.T., and Cho, J., Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and highpower lithium-ion batteries, Angew. Chem. Int. Ed. Engl., 2012, vol. 51, p. 8748.

    Article  CAS  PubMed  Google Scholar 

  10. Xiong, L., Xu, Y., Tao, T., and Goodenough, J.B., Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries, J. Power Sources, 2012, vol. 199, p. 214.

    Article  CAS  Google Scholar 

  11. Dai, K., Mao, J., Li, Z., Zhai, Y.C., Wang, Z.H., Song, X.Y., Battaglia, V., and Liu, G., Microsized single-crystal spinel LAMO for high-power lithium ion batteries synthesized via polyvinylpyrrolidone combustion method, J. Power Sources, 2014, vol. 248, p. 22.

    Article  CAS  Google Scholar 

  12. Jiang, Q.Q., Liu, D.D., Zhang, H., and Wang, S., Plasma-assisted sulfur doping of LiMn2O4 for highperformance lithium-ion batteries, J. Phys. Chem. C, 2015, vol. 119, p. 28776.

    Article  CAS  Google Scholar 

  13. Zhao, J., Qu, G., Flake, J.C., et al., Low temperature preparation of crystalline ZrO2 coatings for improved elevated-temperature performances of Li-ion battery cathodes, Chem. Commun., 2012, vol. 48, p. 8108.

    Article  CAS  Google Scholar 

  14. Zhang, C.C., Liu, X.Y., Su, Q.L., Wu, J.H., Huang, T., and Yu, A.S., Enhancing electrochemical performance of LiMn2O4 cathode material at elevated temperature by uniform nanosized TiO2 coating, ACS Sustain. Chem. Eng., 2017, vol. 5, p. 640.

    Article  CAS  Google Scholar 

  15. Patel, R.L., Park, J., and Liang, X.H., Ionic and electronic conductivities of atomic layer deposition thin film coated lithium ion battery cathode particles, Rsc. Adv., 2016, vol. 6, p. 98768.

    Article  CAS  Google Scholar 

  16. Yang, G.R., Wang, L., Wang, J.N., and Yan, W., Tailoring the morphology of one-dimensional hollow LiMn2O4 nanostructures by single-spinneret electro-spinning, Mater. Lett., 2016, vol. 177, p. 13.

    Article  CAS  Google Scholar 

  17. Hung, I.M., Yang, Y.C., Su, H.J., and Zhang, J., Influences of the surfactant on the performance of nano-LiMn2O4 cathode material for lithium-ion battery, Ceram. Int., 2015, vol. 41, p. S779.

    Article  CAS  Google Scholar 

  18. Jiang, H., Fu, Y., Hu, Y.J., Yan, C.Y., Zhang, L., Lee, P.S., and Li, C.Z., Hollow LiMn2O4 nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances, Small, 2014, vol. 10, p. 1096.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, F.X., Xiao, S.Y., Zhu, Y.S., Chang, Z., Hu, C.L., Wu, Y.P., and Holze, R., Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors, J. Power Sources, 2014, vol. 246, p. 19.

    Article  CAS  Google Scholar 

  20. Li, J., Zhang, X., Peng, R.F., Huang, Y.J., Guo, L., and Qi, Y.C., LiMn2O4/graphene composites as cathodes with enhanced electrochemical performance for lithium-ion capacitors, Rsc Adv., 2016, vol. 6, p. 54866.

    Article  CAS  Google Scholar 

  21. Li, S., Wei, X.G., Chang, Z.R., Chen, X.N., Yuan, X.Z., and Wang, H.J., Facile fabrication of LiMn2O4 microspheres from multi-shell MnO2 for high-performance lithium-ion batteries, Mater. Lett., 2014, vol. 135, p. 75.

    Article  CAS  Google Scholar 

  22. Deng, J.Q., Pan, J., Yao, Q.R., Wang, Z.M., and Zhou, H.Y., Porous core-shell LiMn2O4 microellip-soids as high-performance cathode materials for Li-ion batteries, J. Power Sources, 2015, vol. 278, p. 370.

    Article  CAS  Google Scholar 

  23. Guo, D.L., Chang, Z.R., Tang, H.W., Li, B., Xu, X.H., Yuan, X.Z., and Wang, H.J., Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical Mn3O4, Electrochim. Acta, 2014, vol. 123, p. 254.

    Article  CAS  Google Scholar 

  24. Zhou, Y.B., Deng, Y.F., Yuan, W.H., and Chen, G.H., Synthesis of spinel LiMn2O4 microspheres with durable high rate capability, Trans. Nonferrous Met. Soc., 2012, vol. 22, p. 2541.

    Article  CAS  Google Scholar 

  25. Tang, H., Chang, Z., Zhao, H., Yuan, X.Z., Wang, H.J., and Gao, S.Y., Effects of precursor treatment on the structure and electrochemical properties of spinel LiMn2O4 cathode, J. Alloy. Compd., 2013, vol. 566, p. 16.

    Article  CAS  Google Scholar 

  26. Ragavendran, K., Chou, H.L., Lu, L., Lai, M.O., Hwang, B.J., Ravi Kumar, R., Gopukumar, S., Emmanuel, B., Vasudevan, D., and Sherwood, D., Crystal habits of LiMn2O4 and their influence on the electrochemical performance, Mater. Sci. Eng. B, 2011, vol. 176, p. 1257.

    Article  CAS  Google Scholar 

  27. Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., and Van, S.W., Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, vol. 4, p. 366.

    Article  CAS  PubMed  Google Scholar 

  28. Ouyang, C., Shi, S., Wang, Z., Huang, X., and Chen, L., Experimental and theoretical studies on dynamic properties of Li ions in LixMn2O4, Solid State Commun., 2004, vol. 130, p. 501.

    Article  CAS  Google Scholar 

  29. Sun, W., Cao, F., Liu, Y., Zhao, X., Liu, X., and Yuan, J., Nanoporous LiMn2O4 nanosheets with exposed {111} facets as cathodes for highly reversible lithium-ion batteries, J. Mater. Chem, 2012, vol. 22, p. 20962.

    Article  CAS  Google Scholar 

  30. Goodenough, J.B. and Kim, Y., Challenges for rechargeable Li batteries, Chem. Mater., 2010, vol. 22, p. 587.

    Article  CAS  Google Scholar 

  31. Hosono, E., Kudo, T., Honma, I., Matsuda, H., and Zhou, H., Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density, Nano Lett., 2009, vol. 9, p. 1045.

    Article  CAS  PubMed  Google Scholar 

  32. Goodenough, J.B. and Park, K.S., The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 2013, vol. 135, p. 1167.

    Article  CAS  PubMed  Google Scholar 

  33. Ellis, B.L., Lee, K.T., and Nazar, L.F., Positive electrode materials for Li-ion and Li batteries, Chem. Mater, 2010, vol. 22, p. 691.

    Article  CAS  Google Scholar 

  34. Striebel, K.A., Sakai, E., and Carins, E.J., Impedance studies of the thin film LiMn2O4/electrolyte interface, J. Electrochem. Soc., 2002, vol. 149, p. A61.

    Article  CAS  Google Scholar 

  35. Jin, Y.C. and Duh, J.G., Kinetic study of high voltage spinel cathode material in a wide temperature range for lithium ion battery, J. Electrochem. Soc., 2017, vol. 164, p. A735.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixia Feng.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 5, pp. 515–522.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Feng, H., Liu, J. et al. Porous LiMn2O4 Nano-Microspheres as Durable High Power Cathode Materials for Lithium Ion Batteries. Russ J Electrochem 55, 351–357 (2019). https://doi.org/10.1134/S1023193519040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519040037

Keywords

Navigation