Skip to main content
Log in

Experimental Study of Current Density and Liquid Phase Electric Conductivity Effects on Bubble Size Distribution in an Electroflotation Column

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electroflotation column is preferred in many chemicals, electrochemical and biochemical wastewater process treatment due to their simplicity in design, operation and maintenance. Indeed, it is very important to have a tool to determine and optimize the size distribution of the bubbles produced inside columns. In this context and in order to improve the performance of wastewater treatment by electroflotation process, the main objective of this study was to investigate the effect of current density and liquid phase electric conductivity on the bubble size distribution and on the bubble flow regime. For this a rectangular electroflotation column was used. The method of recording and the video image analyzing was used to determine the diameter and the rise velocity of the bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghernaout, D., Naceur, M.W., and Aouabed, A., On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment, Desalination, 2011, vol. 270, p. 9.

    Article  CAS  Google Scholar 

  2. Ma, L., Sun, C., Ren, J., Wei, H., and Liu, P., Efficient electrochemical incineration of phenol on activated carbon fiber as a new type of particulates, Russ. J. Electrochem., 2014, vol. 50, p. 569.

    Article  CAS  Google Scholar 

  3. Ben Mansour, L., Ben Abdou, Y., and Gabsi, S., Effect of some parameters on removal process of nickel by electroflotation, Water Environ. Res. J., 2001, vol. 2, p. 51.

    Google Scholar 

  4. Merzouk, B., Yakoubi, M., Zongo, I., Leclerce, J.-P., Paternottee, G., Pontviannee, S., and Lapicquee, F., Effect of modification of textile wastewater composition on electrocoagulation efficiency, Desalination, 2011, vol. 275, p. 181.

    Article  CAS  Google Scholar 

  5. Anissa, A., Ridha, L., and Amor, H., Feasibility evaluation of combined electrocoagulation/adsorption process by optimizing operating parameters removal for textile wastewater treatment, Desal. Water Treat., 2017, vol. 60, p. 78.

    Article  CAS  Google Scholar 

  6. Ben Mansour, L. and Chalbi, S., Removal of oil from oil/water emulsions using electroflotation process, J. Appl. Electrochem., 2006, vol. 36, p. 577.

    Article  CAS  Google Scholar 

  7. Bukhari, A.A., Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater, Bioresour. Technol., 2008, vol. 99, p. 914.

    Article  CAS  PubMed  Google Scholar 

  8. Merzouk, B., Yakoubi, M., Zongo, I., Leclerc, J.-P., Paternotte, G., Pontvianne, S., and Lapicque, F., Bubble size measurement in electroflotation, Miner. Eng., 2010, vol. 23, p. 1058.

    Article  CAS  Google Scholar 

  9. Ren, L., Zhang, Y., Qin, M., Bao, S., Wang, P., and Yang, C., Investigation of condition-induced bubble size and distribution in electroflotation using a highspeed camera, Int. J. Min. Sci. Technol., 2014, vol. 24, p. 7.

    Article  Google Scholar 

  10. Zhu, C., Hu, C., Lu, J., Wang, X., Li, H., and Chen, T., Electrocatalytic degradation of bisphenol a in aqueous solution using ß-PbO2/Ti as anode, Russ. J. Electrochem., 2015, vol. 51, p. 353.

    Article  CAS  Google Scholar 

  11. Zabel, T., Advantages of dissolved air flotation for water treatment, J. Am. Water Works Assoc., 1985, vol. 77, p. 42.

    Article  CAS  Google Scholar 

  12. Jia, B.J., Zhou, J.T., Zhang, A.L., et al., Novel electrochemical heterogeneous catalytic reactor for organic pollutant abatement, Russ. J. Electrochem., 2007, vol. 43, p. 296.

    Article  CAS  Google Scholar 

  13. Kolesnikov, V.A., Varaksin S.O., and Kryuchkova, L.A., Electroflotation extraction of valuable components from wash waters of electroplating works, with water recycling, Russ. J. Electrochem., 2001, vol. 37, p. 760.

    Article  CAS  Google Scholar 

  14. Kyzas George, Z. and Matis Kostas, A., Electroflotation process: A review, J. Molec. Liquids, 2016, vol. 220, p. 657.

    Article  CAS  Google Scholar 

  15. Samantha, G.C., Dutra Achilles, J.B., and Monte Marisa, B.M., The influence of some parameters on bubble average diameter in an electroflotation cell by laser diffraction method, J. Environ. Chem. Eng., 2016, vol. 4, p. 3681.

    Article  CAS  Google Scholar 

  16. Ksentini, I., Kotti, M., and Ben Mansour, L., Effect of liquid phase physicochemical characteristics on hydrodynamics of an electroflotation column, Desalin. Water Treat., 2013, vol. 51, p. 1.

    Article  CAS  Google Scholar 

  17. Lin, B., Recke, B., Knudsen, J.K.H., and Jorgensen, S.B., Bubble size estimation for flotation processes, Mineral Eng., 2008, vol. 21, p. 539.

    Article  CAS  Google Scholar 

  18. Labbafi, M., Thakur, R.K., Vial, C., and Djelveh, G., Development of an on-line optical method for assment of the bubble size and morphology in aerated food products, Food Chem., 2007, vol. 102, p. 454.

    Article  CAS  Google Scholar 

  19. Ding, Y.G., Lu, X., and Deng, F.L., Numerical simulation with a CFD-PBM model of hydrodynamics and bubble size distribution of a rectangle bubble column, Am. Soc. Mech. Eng., 2016, vol. 5, p. 30.

    Google Scholar 

  20. Schafer, R., Merten, C., and Eigenberger, G., Bubble size distributions in a bubble column reactor under industrial conditions, Exp. Therm. Fluid Sci., 2002, vol. 26, p. 595.

    Article  CAS  Google Scholar 

  21. Kendoush, A.A., Mohammed, T.J., and Abid, B.A., Experimental investigation of the hydrodynamic interaction in bubbly tow phase flow, J. Chem. Eng. Processing, 2004, vol. 43, p. 23.

    Article  CAS  Google Scholar 

  22. Malysa, K., Krasowska, M., and Krzan, M., Influence of surface active substances on bubble motion and collision with various interfaces, Adv. Colloid Interface Sci., 2005, vol. 114, p. 205.

    Article  CAS  PubMed  Google Scholar 

  23. Prakash, A., Margaritis, A., and Li, H., Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast, Biochem. Eng. J., 2001, vol. 9, p. 155.

    Article  CAS  Google Scholar 

  24. Sentini, K., Hmidi, N., Hajlaoui, N., and Ben Mansour, L., Hydrodynamic study of an electroflotation column operating in continuous mode, I.J.I.R.T., 2014, vol.1, p. 109.

    Google Scholar 

  25. Painmanakul, P., Loubièrea, K., Hébrarda, G., Peuchot, M.M., and Roustan, M., Effect of surfactants on liquid-side mass transfer coefficients, Chem. Eng. Sci., 2005, vol. 60, p. 6480.

    Article  CAS  Google Scholar 

  26. Issaoui, R., Ksentini, I., Kotti, M., and Ben Mansour, L., Effect of current density and oil concentration on hydrodynamic aspects in electroflotation column during oil/water emulsion treatment, Water Treat. Demineral. Technol., 2017, vol. 39, p. 166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Ksentini.

Additional information

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 5, pp. 523–528.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajlaoui, N., Ksentini, I., Kotti, M. et al. Experimental Study of Current Density and Liquid Phase Electric Conductivity Effects on Bubble Size Distribution in an Electroflotation Column. Russ J Electrochem 55, 358–363 (2019). https://doi.org/10.1134/S1023193519040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519040025

Keywords

Navigation