Skip to main content

Synthesis and Characterization of Tungsten Trioxide/Polyaniline/Polyacrylonitrile Composite Nanofibers for Application as a Counter Electrode of DSSCs

Abstract

—Electrospinning and spin-coating techniques were used for the fabrication of polyacrylonitrile/polyaniline/WO3 (PAN/PANI/WO3) nanocomposite nanofibers as a counter electrode of DSSCs. Scanning Electron Microscopy, Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy, Cyclic Voltammetry and Electrochemical Impedance Spectroscopy were used for characterization of the fabricated nanofibers. Fabrication of bead-free and smooth nanofibers was confirmed and reduction of the average diameter of nanofibers by increasing in PANI content from 482 to 88 nm was clearly shown in SEM images. In the Spin-coating of WO3 nanoparticles on the surface of the PAN/PANI nanofibers, the lowest agglomeration was observed at 2 wt % of WO3. The results showed that the electrocatalytic activity of the mats is enhanced when PANI content in the electrospinning solution increases. The same positive effect was obtained by the presence of WO3 nanoparticles on the surface of the mats. The results of the photoelectric analysis indicated that these novel fibrous nanocomposites with the efficiency equal to 2.72 can be usable as a new catalyst for DSSCs counter electrodes.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Kalyanasundaram, K., Dye-Sensitized Solar Cells, EPFL Press, 2010.

    Book  Google Scholar 

  2. 2.

    Miao, J., Miyauchi, M., Simmons, T.J., Dordick, J.S., and Linhardt, R.J., Electrospinning of nanomaterials and applications in electronic components and devices, J. Nanosci. Nanotech., 2010, vol. 10, pp. 5507–5519.

    Article  CAS  Google Scholar 

  3. 3.

    Yue, G., Wu, J., Xiao, Y., Lin, J., Huang, M., Fan, L., and Yao, Y., A dye-sensitized solar cell based on PEDOT: PSS counter electrode, Chin. Sci. Bull., 2013, vol. 58, pp. 559–566.

    Article  CAS  Google Scholar 

  4. 4.

    Theerthagiri, J., Senthil, A.R., Madhavan, J., and Maiyalagan, T., Recent progress in non-platinum counter electrode materials for dye-sensitized solar cells, Chem. Electro. Chem., 2015, vol. 2, pp. 928–945.

    CAS  Google Scholar 

  5. 5.

    Lee, Y.L., Chen, C.L., Chong, L.W., Chen, C.H., Liu, Y.F., and Chi, C.F., A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells, Electrochem. Commun., 2010, vol. 12, pp. 1662–1665.

    Article  CAS  Google Scholar 

  6. 6.

    Calogero, G., Calandra, P., Irrera, A., Sinopoli, A., Citro, I., and Di Marco, G., A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells, Energ. Environ. Sci., 2011, vol. 4, pp. 1838–1844.

    Article  CAS  Google Scholar 

  7. 7.

    Ramasamy, E., Lee, W.J., Lee, D.Y., and Song, J.S., Nanocarbon counterelectrode for dye sensitized solar cells, Appl. Phys. Lett., 2007, vol. 90, p. 173103.

    Article  CAS  Google Scholar 

  8. 8.

    Murakami, T.N., Ito, S., Wang, Q., Nazeeruddin, M.K., Bessho, T., Cesar, I., Liska, P., Humphry-Baker, R., Comte, P., and Pechy, P., Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, J. Electrochem. Soc., 2006, vol. 153, pp. A2255–A2261.

    Article  CAS  Google Scholar 

  9. 9.

    Saranya, K., Rameez, M., and Subramania, A., Developments in conducting polymer based counter electrodes for dye-sensitized solar cells-an overview, Eur. Polym. J., 2015, vol. 66, pp. 207–227.

    Article  CAS  Google Scholar 

  10. 10.

    Li, G., Song, J., Pan, G., and Gao, X., Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells, Energy. Environ. Sci., 2011, vol. 4, pp. 1680–1683.

    Article  CAS  Google Scholar 

  11. 11.

    Guo, J., Liang, S., Shi, Y., Hao, C., Wang, X., and Ma, T., Transition metal selenides as efficient counterelectrode materials for dye-sensitized solar cells, Phys. Chem. Chem. Phys., 2015, vol. 17, pp. 28985–28992.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Zhang, X., Chen, X., Zhang, K., Pang, S., Zhou, X., Xu, H., Dong, S., Han, P., Zhang, Z., and Zhang, C., Transition-metal nitride nanoparticles embedded in Ndoped reduced graphene oxide: superior synergistic electrocatalytic materials for the counter electrodes of dye-sensitized solar cells, J. Mater. Chem. A, 2013, vol. 1, pp. 3340–3346.

    Article  CAS  Google Scholar 

  13. 13.

    Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., Luo, G., Lin, Y., Xie, Y., and Wei, Y., Counter electrodes in dye-sensitized solar cells, Chem. Soc. Rev., 2017, vol. 46, pp. 5975–6023.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Contractor, A., Sureshkumar, T.N., Narayanan, R., Sukeerthi, S., Lal, R., and Srinivasa, R., Conducting polymer-based biosensors, Electrochim. Acta., 1994, vol. 39, pp. 1321–1324.

    Article  CAS  Google Scholar 

  15. 15.

    Gerard, M., Chaubey, A., and Malhotra, B., Application of conducting polymers to biosensors, Biosens. Bioelectron., 2002, vol. 17, pp. 345–359.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Bai, H. and Shi, G., Gas sensors based on conducting polymers, Sensors, 2007, vol. 7, pp. 267–307.

    Article  CAS  Google Scholar 

  17. 17.

    Snook, G.A., Kao, P., and Best, A.S., Conductingpolymer-based supercapacitor devices and electrodes, J. Power Sources, 2011, vol. 196, pp. 1–12.

    Article  CAS  Google Scholar 

  18. 18.

    Shi, Y., Peng, L., Ding, Y., Zhao, Y., and Yu, G., Nanostructured conductive polymers for advanced energy storage, Chem. Soc. Rev., 2015, vol. 44, pp. 6684–6696.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Qiu, Y., Lu, S., Wang, S., Zhang, X., He, S., and He, T., High-performance polyaniline counter electrode electropolymerized in presence of sodium dodecyl sulfate for dye-sensitized solar cells, J. Power Sources, 2014, vol. 253, pp. 300–304.

    Article  CAS  Google Scholar 

  20. 20.

    Ameen, S., Akhtar, M.S., Kim, Y.S., Yang, O.B., and Shin, H.S., Sulfamic acid-doped polyaniline nanofibers thin film-based counter electrode: application in dye-sensitized solar cells, J. Phys. Chem. C, 2010, vol. 114, pp. 4760–4764.

    Article  CAS  Google Scholar 

  21. 21.

    Zhang, J., Hreid, T., Li, X., Guo, W., Wang, L., Shi, X., Su, H., and Yuan, Z., Nanostructured polyaniline counter electrode for dye-sensitised solar cells: fabrication and investigation of its electrochemical formation mechanism, Electrochim. Acta., 2010, vol. 55, pp. 3664–3668.

    Article  CAS  Google Scholar 

  22. 22.

    Li, Q., Wu, J., Tang, Q., Lan, Z., Li, P., Lin, J., and Fan, L., Application of microporous polyaniline counter electrode for dye-sensitized solar cells, Electrochem. Commun., 2008, vol. 10, pp. 1299–1302.

    Article  CAS  Google Scholar 

  23. 23.

    Qin, Q., Tao, J., Yang, Y., and Dong, X., In situ oxidative polymerization of polyaniline counter electrode on ITO conductive glass substrate, Polym. Eng. Sci., 2011, vol. 51, p. 663.

    Article  CAS  Google Scholar 

  24. 24.

    Shi, X., Zhou, W., Ma, D., Ma, Q., Bridges, D., Ma, Y., and Hu, A., J. Nanomater., 2015, vol. 16, pp. 122–669.

    Google Scholar 

  25. 25.

    Fang, J., Shao, H., Niu, H., and Lin, T., in Handbook of Smart Textiles, Tao, X., Ed., Singapore: Springer, 2016, pp. 1–29.

  26. 26.

    Mei, J. and Bao, Z., Side chain engineering in solutionprocessable conjugated polymers, Chem. Mater., 2013, vol. 26, pp. 604–615.

    Article  CAS  Google Scholar 

  27. 27.

    Osaka, I. and McCullough, R.D., Advances in molecular design and synthesis of regioregular polythiophenes, Acc. Chem. Res., 2008, vol. 41, pp. 1202–1214.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Dufour, B., Rannou, P., Djurado, D., Janeczek, H., Zagorska, M., de Geyer, A., Travers, J.-P., and Pron, A., Stretchable polyaniline of metallic-type conductivity: role of dopant engineering in the control of polymer supramolecular organization and in the tuning of its properties, Chem. Mater., 2003, vol. 15, pp. 1587–1592.

    Article  CAS  Google Scholar 

  29. 29.

    Bredas, J., Themans, B., Fripiat, J., Andre, J., and Chance, R., Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains: an ab initio study of the geometry and electronic-structure modifications upon doping, Phys. Rev. B, 1984, vol. 29, pp. 6761–6773.

    Article  CAS  Google Scholar 

  30. 30.

    Yanilmaz, M. and Sarac, A.S., A review: effect of conductive polymers on the conductivities of electrospun mats, Text. Res. J., 2014, vol. 84, pp. 1325–1342.

    Article  CAS  Google Scholar 

  31. 31.

    Lin, Q., Li, Y., and Yang, M., Polyaniline nanofiber humidity sensor prepared by electrospinning, Sens. Actuators B: Chem., 2012, vol. 161, pp. 967–972.

    Article  CAS  Google Scholar 

  32. 32.

    Pinto, N., Johnson, A., Jr., MacDiarmid, A., Mueller, C., Theofylaktos, N., Robinson, D., and Miranda, F., Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor, Appl. Phys. Lett., 2003, vol. 83, pp. 4244–4246.

    Article  CAS  Google Scholar 

  33. 33.

    Díaz-de Léon, M.J., Electrospinning nanofibers of polyaniline and polyaniline/(polystyrene and polyethylene oxide) blends, Proc. Nat. Conf. on Undergraduate Research (NCUR), University of Kentucky, 2001, pp. 15–17.

    Google Scholar 

  34. 34.

    Picciani, P.H., Medeiros, E.S., Pan, Z., Orts, W.J., Mattoso, L.H., and Soares, B.G., Development of conducting polyaniline/poly (lactic acid) nanofibers by electrospinning, J. Appl. Polym. Sci., 2009, vol. 112, pp. 744–753.

    Article  CAS  Google Scholar 

  35. 35.

    Picciani, P.H.S., Medeiros, E.S., Pan, Z., Wood, D.F., Orts, W.J., Mattoso, L.C., and Soares, B.G., Mechanical, and thermal properties of electrospun poly (lactic acid)/polyaniline blend fibers, Macromol. Mater. Eng., 2010, vol. 295, pp. 618–627.

    Article  CAS  Google Scholar 

  36. 36.

    Al-Jallad, M. and Atassi, Y., Preparation of nonwoven mats of electrospun poly (lactic acid)/polyaniline blend nanofibers: a new approach, J. Appl. Polym. Sci., 2016, vol. 133, p. 43687.

    Article  CAS  Google Scholar 

  37. 37.

    Veluru, J.B., Satheesh, K., Trivedi, D., Ramakrishna, M.V., and Srinivasan, N.T., Electrical properties of electrospun fibers of PANI-PMMA composites, J. Eng. Fibers Fabrics, 2007, vol. 2, pp. 25–31.

    CAS  Google Scholar 

  38. 38.

    Hong, K.H. and Kang, T.J., Polyaniline-nylon 6 composite nanowires prepared by emulsion polymerization and electrospinning process, J. Appl. Polym. Sci., 2006, vol. 99, pp. 1277–1286.

    Article  CAS  Google Scholar 

  39. 39.

    Zarrini, K., Rahimi, A.A., Alihosseini, F., and Fashandi, H., Highly efficient dye adsorbent based on polyaniline-coated nylon-6 nanofibers, J. Clean. Prod., 2017, vol. 142, pp. 3645–3654.

    Article  CAS  Google Scholar 

  40. 40.

    Asiri, A.M., Electrospun polyaniline/polyvinyl alcohol/multiwalled carbon nanotubes nanofibers as promising bioanode material for biofuel cells, J. Electroanal. Chem., 2017, vol. 789, pp. 181–187.

    Article  CAS  Google Scholar 

  41. 41.

    Fryczkowski, R. and Kowalczyk, T., Nanofibres from polyaniline/polyhydroxybutyrate blends, Synth. Met., 2009, vol. 159, pp. 2266–2268.

    Article  CAS  Google Scholar 

  42. 42.

    Low, K., Horner, C.B., Li, C., Ico, G., Bosze, W., Myung, N.V., and Nam, J., Composition-dependent sensing mechanism of electrospun conductive polymer composite nanofibers, Sens. Actuators B: Chem., 2015, vol. 207, pp. 235–242.

    Article  CAS  Google Scholar 

  43. 43.

    Sarvi, A., Chimello, V., Silva, A., Bretas, R., and Sundararaj, U., Coaxial electrospun nanofibers of poly (vinylidene fluoride)/polyaniline filled with multi walled carbon nanotubesб Polym. Compos., 2014, vol. 35, pp. 1198–1203.

    CAS  Google Scholar 

  44. 44.

    Cai, X., Huang, X., Zheng, Z., Xu, J., Tang, X., and Lei, T., Effect of polyaniline (emeraldine base) addition on α to β phase transformation in electrospun PVDF fibers, J. Macromol. Sci. B, 2017, vol. 56, pp. 75–82.

    Article  CAS  Google Scholar 

  45. 45.

    Raeesi, F., Nouri, M., and Haghi, A.K., Electrospinning of polyaniline-polyacrylonitrile blend nanofibers, e-Polymers, 2009, vol. 9, pp. 1350–1362.

    Article  Google Scholar 

  46. 46.

    Qavamnia, S.S. and Nasouri, K., onductive polyacrylonitrile/polyaniline nanofibers prepared by electrospinning process, Polym. Sci. Ser. A, 2015, vol. 57, pp. 343–349.

    Article  CAS  Google Scholar 

  47. 47.

    Wang, J., Pan, K., Giannelis, E.P., and Cao, B., Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications, RSC. Adv., 2013, vol. 3, pp. 8978–8987.

    Article  CAS  Google Scholar 

  48. 48.

    Taghipoor, F., Semnani, D., Naghashzargar, E., and Rezaei, B., Electrochemical properties of bi-component bundle of coaxial polyacrylonitrile/polyaniline nanofibers containing TiO2 nanoparticles, J. Compos. Mater., 2017, vol. 51, pp. 3355–3363.

    Article  CAS  Google Scholar 

  49. 49.

    Zhang, C.L. and Yu, S.H., Nanoparticles meet electrospinning: recent advances and future prospects, Chem. Soc. Rev., 2014, vol. 43, pp. 4423–4448.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Meyer, J., Hamwi, S., Kroger, M., Kowalsky, W., Riedl, T., and Kahn, A., Transition metal oxides for organic electronics: energetics, device physics and applications, Adv. Mater., 2012, vol. 24, pp. 5408–5427.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Saito, Y., Uchida, S., Kubo, T., and Segawa, H., Surface-oxidized tungsten for energy-storable dye-sensitized solar cells, Thin Solid Films, 2010, vol. 518, pp. 3033–3036.

    Article  CAS  Google Scholar 

  52. 52.

    Uppachai, P., Harnchana, V., Pimanpang, S., Amornkitbamrung, V., Brown, A.P., and Brydson, RM., A substoichiometric tungsten oxide catalyst provides a sustainable and efficient counter electrode for dye-sensitized solar cells, Electrochim. Acta, 2014, vol. 145, pp. 27–33.

    Article  CAS  Google Scholar 

  53. 53.

    Kizildag, N., Ucar, N., Karacan, I., Onen, A., and Demirsoy, N., The effect of the dissolution process and the polyaniline content on the properties of polyacrylonitrile-polyaniline composite nanoweb, J. Ind. Text., 2016, vol. 45, pp. 1548–1570.

    Article  CAS  Google Scholar 

  54. 54.

    Ucar, N., Kizildag, N., Onen, A., Karacan, I., and Eren, O., Polyacrylonitrile-polyaniline composite nanofiber webs: yffects of solvents, redoping process and dispersion technique, Fiber. Polym., 2015, vol. 16, pp. 2223–2236.

    Article  CAS  Google Scholar 

  55. 55.

    Sedghi, R. Moazzami, H.R., Hosseiny Davarani, S.S., Nabid, M.R., and Keshtkar, A.R., A one step electrospinning process for the preparation of polyaniline modified TiO2/polyacrylonitile nanocomposite with enhanced photocatalytic activity, J. Alloys Compd., 2017, vol. 695, pp. 1073–1079.

    Article  CAS  Google Scholar 

  56. 56.

    Tavakkol, E., Tavanai, H., Abdolmaleki, A., and Morshed, M., Production of conductive electrospun polypyrrole/poly (vinyl pyrrolidone) nanofibers, Synth. Met., 2017, vol. 231, pp. 95–106.

    Article  CAS  Google Scholar 

  57. 57.

    Hara, K., Zhao, Z-G., Cui, Y., Miyauchi, M., Miyashita, M., and Mori, S., Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells, Langmuir, 2011, vol. 27, pp. 12730–12736.

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Zheng, H., Tachibana, Y., and Kalantar-zadeh, K., Dye-sensitized solar cells based on WO3, Langmuir, 2010, vol. 26, pp. 19148–19152.

    Article  CAS  PubMed  Google Scholar 

  59. 59.

    Xu, H., Li, X., and Wang, G., Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors, J. Power Sources, 2015, vol. 294, pp. 16–21.

    Article  CAS  Google Scholar 

  60. 60.

    Parvatikar, N., Jain, S., Khasim, S., Revansiddappa, M., Bhoraskar, S., and Prasad, M.A., Electrical and humidity sensing properties of polyaniline/WO3 composites, Sens. Actuators B- Chem., 2006, vol. 114, pp. 599–603.

    Article  CAS  Google Scholar 

  61. 61.

    Santato, C., Odziemkowski, M., Ulmann, M., and Augustynski, J., Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications, J. Am. Chem. Soc., 2001, vol. 123, pp. 10639–10649.

    Article  CAS  PubMed  Google Scholar 

  62. 62.

    Peng, S., Zhu, P., Wu, Y., Mhaisalkar, S.G., and Ramakrishna, S., Electrospun conductive polyanilinepolylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells, RSC. Adv., 2012, vol. 2, pp. 652–657.

    Article  CAS  Google Scholar 

  63. 63.

    An, H., An, G.H., and Ahn, H.J., Characterization of porous carbon nanofibers decorated with Pt catalysts for use as counter electrodes in dye-sensitized solar cells, J. Ceram. Process Res., 2015, vol. 16, pp. 208–212.

    Google Scholar 

  64. 64.

    MacDiarmid, A.G. and Epstein, A. J., The concept of secondary doping as applied to polyaniline, Synth. Met., 1994, vol. 65, nos. 2–3, pp. 103–116.

    Article  CAS  Google Scholar 

  65. 65.

    MacDiarmid, A.G. and Epstein, A.J., Secondary doping in polyaniline, Synth. Met., 1995, vol. 69, nos. 1–3, pp. 85–92.

    Article  CAS  Google Scholar 

  66. 66.

    Stejskal, J., Prokes, J., and Trchova, M., Reprotonated polyanilines: the stability of conductivity at elevated temperature, Polym. Degrad. Stabil., 2014, vol. 102, pp. 67–73.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahdi Nouri.

Additional information

The article is published in the original.

Published in Russian in Elektrokhimiya, 2019, Vol. 55, No. 4, pp. 447–462.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eslah, S., Nouri, M. Synthesis and Characterization of Tungsten Trioxide/Polyaniline/Polyacrylonitrile Composite Nanofibers for Application as a Counter Electrode of DSSCs. Russ J Electrochem 55, 291–304 (2019). https://doi.org/10.1134/S1023193519030054

Download citation

Keywords

  • polyaniline
  • electrospinning
  • counter electrode
  • tungsten trioxide