Micro-Mesoporous Carbon Materials Prepared from the Hogweed (Heracleum) Stalks as Electrode Materials for Supercapacitors

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The data on carbonization and surface activation of raw hogweed (Heracleum) are presented. The structural and electrochemical properties of thus synthesized carbon materials which can be used as the electrode materials in supercapacitors are studied. The hogweed samples are preliminarily carbonized at 400°C and then activated with potassium hydroxide (KOH) at temperatures of 700, 800, and 900°C in argon atmosphere. According to isotherms of nitrogen adsorption and the BET equation, the specific surface area of samples activated at 700, 800, and 900°C is 913 ± 22, 1215 ± 70, and 1929 ± 99 m2/g, respectively. As the activation temperature increases, the specific surface area and the mesopore volume of samples also increases, whereas the micropore fraction decreases. 1,1-Dimethylpyrrolidinium tetrafluoroborate in acetonitrile was used as an electrolyte. The specific capacitance of samples activated at 700, 800, and 900°C at the current density of 1 A/g is 51 ± 4, 114 ± 2, and 108 ± 3 F/g, respectively. The 40% increase in the specific surface area and the 35% increase in the volume of mesopores results in the increase in the specific capacitance. The further increase in the specific surface area and the volume of mesopores up to 70% does not increase the specific capacitance.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Lu, M., Beguin, F., and Frackowiak, E., Supercapacitors: Materials, Systems, and Applications, Weinheim: Wiley VCH, 2013.

    Google Scholar 

  2. 2.

    Gu, W. and Yushin, G., Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, Energy Environ., 2014, vol. 3, p. 424.

    CAS  Google Scholar 

  3. 3.

    Portet, C., Yushin, G., and Gogotsi, Y., Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, 2007, vol. 45, p. 2511.

    Article  CAS  Google Scholar 

  4. 4.

    Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.Z., and Lu, G.Q., Preparation of capacitor’s electrode from sunflower seed shell, Bioresour. Technol., 2011, vol. 102, p. 1118.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., and Moreno-Castilla, C., Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol., 2012, vol. 112, p. 185.

    Article  CAS  Google Scholar 

  6. 6.

    Jain, A. and Tripathi, S.K., Almond shell-based activated nanoporous carbon electrode for EDLCs, Ionics, 2015, vol. 21, p. 1391.

    Article  CAS  Google Scholar 

  7. 7.

    Teoh, K.H., Lim, C.S., Liew, C.W., Ramesh, S., and Ramesh, S., Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler, Ionics, 2015, vol. 21, p. 2061.

    Article  CAS  Google Scholar 

  8. 8.

    Chen, X., Wu, K., Gao, B., Xiao, Q., Kong, J., Xiong, Q., Peng, X., Zhang, X., and Fu, J., Three-dimensional activated carbon recycled from rotten potatoes for highperformance supercapacitors, Waste Biomass Valorization, 2016, vol. 7, p. 551.

    Article  CAS  Google Scholar 

  9. 9.

    Ramirez-Castro, C., Schütter, C., Passerini, S., and Balducci, A., Microporous carbonaceous materials prepared from biowaste for supercapacitor application, Electrochim. Acta, 2016, vol. 206, p. 452.

    Article  CAS  Google Scholar 

  10. 10.

    Shang, T.X. and Jin, X.J., Waste particleboard-derived nitrogen-containing activated carbon through KOH activation for supercapacitors, J. Solid State Electro-chem., 2016, vol. 20, p. 2029.

    Article  CAS  Google Scholar 

  11. 11.

    Sulaiman, K., Mat, A., and Arof, A.K., Activated carbon from coconut leaves for electrical double-layer capacitor, Ionics, 2016, vol. 22, p. 911.

    Article  CAS  Google Scholar 

  12. 12.

    Tey, J.P., Careem, M.A., Yarmo, M.A., and Arof, A.K., Durian shell-based activated carbon electrode for EDLCs, Ionics, 2016, vol. 22, p. 1209.

    Article  CAS  Google Scholar 

  13. 13.

    Kubo, S., Uraki, Y., and Sano, Y., Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping, Carbon, 1998, vol. 36, p. 1119.

    Article  CAS  Google Scholar 

  14. 14.

    Sarkar, S. and Adhikari, B., Synthesis and characterization of lignin–HTPB copolyurethane, Eur. Polym. J., 2001, vol. 37, p. 1391.

    Article  CAS  Google Scholar 

  15. 15.

    Olivares-Marín, M., Fernández-González, C., Macías-García, A., and Gómez-Serrano, V., Preparation of activated carbon from cherry stones by chemical activation with ZnCl2, Appl. Surf. Sci., 2006, vol. 252, p. 5967.

    Article  CAS  Google Scholar 

  16. 16.

    Sing, K.S.W, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 1985, p. 603.

    Google Scholar 

  17. 17.

    Thommes, M., Kaneko, K., Neimark-Alexander, V., Olivier-James, P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing-Kenneth, S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015, p. 1051.

    Google Scholar 

  18. 18.

    Marsh, H., Yan, D.S., O’Grady, T.M., and Wennerberg, A., Formation of active carbons from cokes using potassium hydroxide, Carbon, 1984, vol. 22, p. 603.

    Article  CAS  Google Scholar 

  19. 19.

    Yoon, S.H., Lim, S., Song, Y., Ota, Y., Qiao, W., Tanaka, A., and Mochida, I., KOH activation of carbon nanofibers, Carbon, 2004, vol. 42, p. 1723.

    Article  CAS  Google Scholar 

  20. 20.

    Wang, J. and Kaskel, S., KOH activation of carbon-based materials for energy storage, J. Mater. Chem., 2012, vol. 22, p. 23710.

    Article  CAS  Google Scholar 

  21. 21.

    Mysyk, R., Raymundo-Piñero, E., and Béguin, F., Saturation of subnanometer pores in an electric double-layer capacitor, Electrochem. Commun., 2009, vol. 11, p. 554.

    Article  CAS  Google Scholar 

  22. 22.

    Gryglewicz, G., Machnikowski, J., Lorenc-Grabowska, E., Lota, G., and Frackowiak, E., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p. 1197.

    Article  CAS  Google Scholar 

  23. 23.

    Barbieri, O., Hahn, M., Herzog, A., and Kötz, R., Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 2005, vol. 43, p. 1303.

    Article  CAS  Google Scholar 

  24. 24.

    Chmiola, J., Yushin, G., Dash, R., and Gogotsi, Y., Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources, 2006, vol. 158, p. 765.

    Article  CAS  Google Scholar 

  25. 25.

    Brett, C.M.A. and Brett, A.M.O., Electrochemistry— Principles, Methods and Applications, Oxford: Oxford University, 1993.

    Google Scholar 

  26. 26.

    Taberna, P.L., Simon, P., and Fauvarque, J.F., Electrochemical characteristics and impedance spectros-copy studies of carbon-carbon supercapacitors, J. Elec-trochem. Soc., 2003, vol. 150, p. A292.

    Article  CAS  Google Scholar 

  27. 27.

    Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G., and Machnikowski, J., Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim. Acta, 2004, vol. 49, p. 515.

    Article  CAS  Google Scholar 

  28. 28.

    Lust, E., Jänes, A., and Arulepp, M., Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors, J. Electroanal. Chem., 2004, vol. 562, p. 33.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to F. S. Tabarov or A. A. Klimont.

Additional information

Russian Text © The Author(s), 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 4, pp. 406–413.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tabarov, F.S., Astakhov, M.V., Kalashnik, A.T. et al. Micro-Mesoporous Carbon Materials Prepared from the Hogweed (Heracleum) Stalks as Electrode Materials for Supercapacitors. Russ J Electrochem 55, 265–271 (2019). https://doi.org/10.1134/S1023193519020125

Download citation

Keywords

  • activated carbon
  • hogweed
  • electrode materials
  • supercapacitor
  • mesopores
  • micropores