Lu, M., Beguin, F., and Frackowiak, E., Supercapacitors: Materials, Systems, and Applications, Weinheim: Wiley VCH, 2013.
Google Scholar
Gu, W. and Yushin, G., Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, Energy Environ., 2014, vol. 3, p. 424.
CAS
Google Scholar
Portet, C., Yushin, G., and Gogotsi, Y., Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, 2007, vol. 45, p. 2511.
Article
CAS
Google Scholar
Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.Z., and Lu, G.Q., Preparation of capacitor’s electrode from sunflower seed shell, Bioresour. Technol., 2011, vol. 102, p. 1118.
Article
CAS
PubMed
Google Scholar
Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., and Moreno-Castilla, C., Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol., 2012, vol. 112, p. 185.
Article
CAS
Google Scholar
Jain, A. and Tripathi, S.K., Almond shell-based activated nanoporous carbon electrode for EDLCs, Ionics, 2015, vol. 21, p. 1391.
Article
CAS
Google Scholar
Teoh, K.H., Lim, C.S., Liew, C.W., Ramesh, S., and Ramesh, S., Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler, Ionics, 2015, vol. 21, p. 2061.
Article
CAS
Google Scholar
Chen, X., Wu, K., Gao, B., Xiao, Q., Kong, J., Xiong, Q., Peng, X., Zhang, X., and Fu, J., Three-dimensional activated carbon recycled from rotten potatoes for highperformance supercapacitors, Waste Biomass Valorization, 2016, vol. 7, p. 551.
Article
CAS
Google Scholar
Ramirez-Castro, C., Schütter, C., Passerini, S., and Balducci, A., Microporous carbonaceous materials prepared from biowaste for supercapacitor application, Electrochim. Acta, 2016, vol. 206, p. 452.
Article
CAS
Google Scholar
Shang, T.X. and Jin, X.J., Waste particleboard-derived nitrogen-containing activated carbon through KOH activation for supercapacitors, J. Solid State Electro-chem., 2016, vol. 20, p. 2029.
Article
CAS
Google Scholar
Sulaiman, K., Mat, A., and Arof, A.K., Activated carbon from coconut leaves for electrical double-layer capacitor, Ionics, 2016, vol. 22, p. 911.
Article
CAS
Google Scholar
Tey, J.P., Careem, M.A., Yarmo, M.A., and Arof, A.K., Durian shell-based activated carbon electrode for EDLCs, Ionics, 2016, vol. 22, p. 1209.
Article
CAS
Google Scholar
Kubo, S., Uraki, Y., and Sano, Y., Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping, Carbon, 1998, vol. 36, p. 1119.
Article
CAS
Google Scholar
Sarkar, S. and Adhikari, B., Synthesis and characterization of lignin–HTPB copolyurethane, Eur. Polym. J., 2001, vol. 37, p. 1391.
Article
CAS
Google Scholar
Olivares-Marín, M., Fernández-González, C., Macías-García, A., and Gómez-Serrano, V., Preparation of activated carbon from cherry stones by chemical activation with ZnCl2, Appl. Surf. Sci., 2006, vol. 252, p. 5967.
Article
CAS
Google Scholar
Sing, K.S.W, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 1985, p. 603.
Google Scholar
Thommes, M., Kaneko, K., Neimark-Alexander, V., Olivier-James, P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing-Kenneth, S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015, p. 1051.
Google Scholar
Marsh, H., Yan, D.S., O’Grady, T.M., and Wennerberg, A., Formation of active carbons from cokes using potassium hydroxide, Carbon, 1984, vol. 22, p. 603.
Article
CAS
Google Scholar
Yoon, S.H., Lim, S., Song, Y., Ota, Y., Qiao, W., Tanaka, A., and Mochida, I., KOH activation of carbon nanofibers, Carbon, 2004, vol. 42, p. 1723.
Article
CAS
Google Scholar
Wang, J. and Kaskel, S., KOH activation of carbon-based materials for energy storage, J. Mater. Chem., 2012, vol. 22, p. 23710.
Article
CAS
Google Scholar
Mysyk, R., Raymundo-Piñero, E., and Béguin, F., Saturation of subnanometer pores in an electric double-layer capacitor, Electrochem. Commun., 2009, vol. 11, p. 554.
Article
CAS
Google Scholar
Gryglewicz, G., Machnikowski, J., Lorenc-Grabowska, E., Lota, G., and Frackowiak, E., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p. 1197.
Article
CAS
Google Scholar
Barbieri, O., Hahn, M., Herzog, A., and Kötz, R., Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 2005, vol. 43, p. 1303.
Article
CAS
Google Scholar
Chmiola, J., Yushin, G., Dash, R., and Gogotsi, Y., Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources, 2006, vol. 158, p. 765.
Article
CAS
Google Scholar
Brett, C.M.A. and Brett, A.M.O., Electrochemistry— Principles, Methods and Applications, Oxford: Oxford University, 1993.
Google Scholar
Taberna, P.L., Simon, P., and Fauvarque, J.F., Electrochemical characteristics and impedance spectros-copy studies of carbon-carbon supercapacitors, J. Elec-trochem. Soc., 2003, vol. 150, p. A292.
Article
CAS
Google Scholar
Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G., and Machnikowski, J., Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim. Acta, 2004, vol. 49, p. 515.
Article
CAS
Google Scholar
Lust, E., Jänes, A., and Arulepp, M., Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors, J. Electroanal. Chem., 2004, vol. 562, p. 33.
Article
CAS
Google Scholar