Skip to main content
Log in

Anodes for Lithium-Ion Batteries Obtained by Sintering Silicon Nanopowder

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Isochronous annealing of preliminarily compacted silicon nanopowder specimens is investigated. The density, structure, and conductivity of the material are determined as a function of sintering temperature. The electrochemical characteristics of anodes, which were sintered in the temperature range of 1100 to 1200°C, are studied using galvanostatic tests and cyclic voltammetry. It is found that the specimen, which was annealed at T = 1150°C, shows the best results. This specimen has a density of 1.60 g/cm3, a connected silicon framework, and an open-pore system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S., Zhao, K., Zhu, T., and Li, J., Electrochemomechanical degradation of high-capacity battery electrode materials, Prog. Mater. Sci., 2017, vol. 89, p. 479.

    Article  CAS  Google Scholar 

  2. Du, F.-H., Wang, K.-X. and Chen, J.-Sh., Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials, J. Mater. Chem. A, 2016, vol. 4, p. 32.

    Article  CAS  Google Scholar 

  3. Li, G.V., Astrova, E.V., Rumyantsev, A.M., Voronkov, V.B., Parfen’eva, A.V., Tolmachev, V.A., Kulova, T.L., and Skundin, A.M., Microstructured silicon anodes for lithium-ion batteries, Russ. J. Electrochem., 2015, vol. 51, no. 10, p. 899.

    Article  CAS  Google Scholar 

  4. Astrova, E.V., Li, G.V., Rumyantsev, A.M., and Zhdanov, V.V., Electrochemical characteristics of nanostructured silicon anodes for lithium-ion batteries, Semiconductors, 2016, vol. 50, no. 2, p. 276.

    Article  CAS  Google Scholar 

  5. Li, G.V., Rumyantsev, A.M., Levitskii, V.S., Beregulin, E.V., Zhdanov, V.V., Terukov E.I., and Astrova, E.V., Application of silicon zig-zag wall arrays for anodes of Li-ion batteries, Semicond. Sci. Technol., 2016, vol. 31, p. 014008.

    Article  CAS  Google Scholar 

  6. Föll, H., Carstensen, J., Ossei-Wusu, E., Cojocaru, A., Quiroga-Gonzalez, E., and Neumann, G., Optimized Cu-contacted Si nanowire anodes for Li ion batteries made in a production near process, J. Electrochem. Soc., 2011, vol. 158, no. 5, p. A580.

    Article  CAS  Google Scholar 

  7. Bellanger, P., Sow, A., Grau, M., Augusto, A., Serra, J.M., Kaminski, A., Dubois, S., and Straboni, A., New method of fabricating silicon wafer for the photovoltaic application based on sintering and recrystallization steps, J. Cryst. Growth, 2012, vol. 359, p. 92.

    Article  CAS  Google Scholar 

  8. Buchwald, R., Wurzner, S., Moller, H.J., Siftja, A., Stokkan, G., Ovrelid, E., and Ulyashin, A., Microstructural characterization of Si wafers processed by multi-wire sawing of hot pressed silicon powder based ingots, Phys. Status. Solidi A, 2015, vol. 212 (1), p. 25.

    Article  CAS  Google Scholar 

  9. Moller, H.J. and Welsch, G., Sintering of ultrafine silicon powder, J. Am. Ceram. Soc., 1985, vol. 68, no. 6, p. 320.

    Article  Google Scholar 

  10. Zhang, W.-J., Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries, J. Power Sources, 2011, vol. 196, p. 877.

    Article  CAS  Google Scholar 

  11. Can, C.K., Peng, H., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., and Cui, Y., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotech., 2008, vol. 3, p. 31.

    Article  CAS  Google Scholar 

  12. Ge, M., Rong, J., Fang, X., and Zhou, C., Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett., 2012, vol. 12, p. 2318.

    Article  CAS  PubMed  Google Scholar 

  13. Kovalenko, I., Zdurko, B., Magasinski, A., Hertzberg, B., Milicev, Z., Burtovyy, R., Luzinov, I., and Yushin, G., A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 2011, vol. 334, p. 75.

    Article  CAS  PubMed  Google Scholar 

  14. Kulova, T.L., Irreversible capacity of the amorphous silicon thin-film electrodes, Russ. J. Electrochem., 2008, vol. 44, no. 5, p. 525.

    Article  CAS  Google Scholar 

  15. Astrova, E.V., Rumyantsev, A.M., Li, G.V., Nashchekin, A.V., Kazantsev, D.Yu., Ber, B.Ya., and Zhdanov, V.V., Electrochemical lithiation of silicon with varied crystallographic orientation, Semiconductors, 2016, vol. 50, no. 7, p. 963.

    Article  CAS  Google Scholar 

  16. Preobrazhenskiy, N.E., Astrova, E.V., Pavlov, S.I., Voronkov, V.B., Rumyantsev, A.M., and Zhdanov, V.V., Anodes for Li-ion batteries based on p-Si with self-organized macropores, Semiconductors, 2017, vol. 51, no. 1, p. 78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Astrova.

Additional information

Russian Text © E.V. Astrova, V.B. Voronkov, A.M. Rumyantsev, A.V. Nashchekin, A.V. Parfen’eva, D.A. Lozhkina, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 3, pp. 318–328.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astrova, E.V., Voronkov, V.B., Rumyantsev, A.M. et al. Anodes for Lithium-Ion Batteries Obtained by Sintering Silicon Nanopowder. Russ J Electrochem 55, 184–193 (2019). https://doi.org/10.1134/S1023193519020010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519020010

Keywords

Navigation