Skip to main content
Log in

Applicability of Alginate Film Entrapped Yeast for Microbial Fuel Cell

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

New strategies are proposed for modification of the anode of a Microbial Fuel Cell (MFC). Immobilization of yeast cells as electrogenic microorganism in MFC was reported using alginate. Yeast cells entrapment within alginate matrices was done through films deposited at the surface of a carbon felt electrode and the resulting anodes were characterized by chronoamperometry. Yeast entrapped within alginate films on carbon felt oxidized glucose and generates a current by direct and mediated electrons transfer from yeast cells to the carbon electrode. The result substantiated that immobilization of yeast for MFC could be a promising method to product green electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Potter, A.M.C., Character, B., and Sep, N., Electrical Effects Accompanying the Decomposition of Organic Compounds, Royal Soc. Publ., 2010, vol. 84, p. 260.

    Article  Google Scholar 

  2. Logan, B.E., Exoelectrogenic bacteria that power microbial fuel cell, Nat. Reviews Microbiol., 2009, vol. 7, p. 375.

    Article  CAS  Google Scholar 

  3. Zou, Y., Xiang, C., Yang, L., Sun, L., Xu, F., and Cao Z., A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, Hydrogen Energy, 2008, vol. 33, p. 4856.

    Article  CAS  Google Scholar 

  4. Liu, J., Qiao, Y., Xian, C., Lim, S., Song, H., and Ming, C., Bioresource technology graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells, Bioresource Tech., 2012, vol. 114, p. 275.

    Article  CAS  Google Scholar 

  5. Mardiana, U., Innocent, C., Cretin, M., Buchari, B., and Gandasasmita, S., Yeast fuel cell: application for desalination. IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 107, p. 012049.

    Article  Google Scholar 

  6. Zhang, Y.M., Mo, G.Q., Li, X.W., Zhang, W.D., Zhang, J.Q., Ye, J.S., Huang, X.D., and Yu, C.Z., A graphene modified anode to improve the performance of microbial fuele cell, J. Power Sources, 2011, vol. 196, p. 5402.

    Article  CAS  Google Scholar 

  7. Khrisnaraj, N.R., Karthikeyan, R., Berchmans, S., Chandran, S., and Pal, P., Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells, Electrochim. Acta, 2013, vol. 112, p. 465.

    Article  CAS  Google Scholar 

  8. Walker, A.L. and Walker, C.W., Biological fuel cell and an application as a reserve power source, J. Power Sources, 2006, vol. 160, p. 123.

    Article  CAS  Google Scholar 

  9. Mardiana, U., Innocent, C., Jarrar, H., Cretin, M., Buchari, B., and Gandasasmita, S., Electropolymerized neutral red as redox mediator for yeast fuel cell, Int. J. Electrochem. Sci., 2015, vol. 10, p. 8886.

    CAS  Google Scholar 

  10. Raghavulu, S.V., Goud, R.K., Sarma, P.N., and Mohan, S.V., Bioresource technology saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: influence of redox condition and substrate load, Bioresource Tech., 2011, vol. 102, p. 2751.

    Article  CAS  Google Scholar 

  11. Babanova, S., Hubenova, Y., and Mitov, M., Influence of artificial mediators on yeast-based fuel cell performance, J. Biosci. Bioeng., 2011, vol. 112, p. 379.

    Article  CAS  PubMed  Google Scholar 

  12. Popov, A.L., Kim, J.R., Dinsdale, R.M., Esteves, S.R., Guwy, A.J., and Premier, G.C., The effect of physicochemically immobilized methylene blue and neutral red on the anode of microbial fuel cell, Biotechnol. Bioprocess Eng., 2012, vol. 17, p. 361.

    Article  CAS  Google Scholar 

  13. Wang, K., Liu, Y., and Chen, S., Improved microbial electrocatalysis with neutral red immobilized electrode, J. Power Sources, 2011, vol. 196, p. 164.

    Article  CAS  Google Scholar 

  14. Park, D.H., Laivenieks, M., Guettler, M.V., Jain, M.K., and Zeikus, J.G., Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production, Appl. Environ. Microbiol., 1999, vol. 65, p. 2912.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Watson, V.J. and Logan, B.E., Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures, Biotechnol. Bioeng., 2010, vol. 105, p. 489.

    Article  CAS  PubMed  Google Scholar 

  16. Ishii, S., Watanabe, K., Yabuki, S., Logan, B.E., and Sekiguchi, Y., Comparison of electrode reduction activities of Geobacter sulfurreducens and enriched consortium in air-cathode microbial fuel cell, Appl. Environ. Microbiol., 2008, vol. 74, p. 7348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Z.D, Du, Z.W., Lian, J., Zhu, X.Y., Li, S.H., and Li, H.R., Improving energy accumulation using Rhodoferax ferrireducens as biocatalyst, Lett. Appl. Microbiol., 2007, vol. 44, p. 393.

    Article  CAS  PubMed  Google Scholar 

  18. Logan, B.E., Exoelectrogenic bacteria that power microbial fuel cell, Nat. Rev, Microbiol., 2009, vol. 7, p. 375.

    Article  CAS  Google Scholar 

  19. Prasad, D., Arun, S., Murugesan, M., Padmanaban, S., Satyanarayanan, R.S, Berchmans, S., and Yegnaraman, V., Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell, Biosens. Bioelectron., 2007, vol. 22, p. 2604.

    Article  CAS  PubMed  Google Scholar 

  20. Sayed, E.T., Tsujiguchi, T., and Nakagawa, N., Catalytic activity of baker’s yeast in a mediatorless microbial fuel cell, Bioelectrochem., 2012, vol. 86, p. 97.

    Article  CAS  Google Scholar 

  21. Park, D.H. and Zeikus, J.G., Electricity generation in microbial fuel cell using neutral red as an electronophore, Appl. Environ. Microbiol., 2000, vol. 66, p. 1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stolarzewicz, I., Bialecka-Florjancyk, E., Majewska, E., and Krzyczkowska, J., Immobilization of yeast on polimeric supports, Chem. Biochem. Eng., 2011, vol. 25, p. 135.

    CAS  Google Scholar 

  23. Zhou, Z.D., Li, G.Y., and Li, Y.J., Immobilization of Saccharomyces cereviceae alcohol dehydrogenase on hybrid alginate chitosan beads, Int. J. Biol. Macromol., 2010, vol. 47, p. 21.

    Article  CAS  PubMed  Google Scholar 

  24. Panesar, R., Panesar, P.S., Singh, R.S., and Bera, M.B., Applicability of alginate entrapped yeast cells for the production of lactose hydrolyzed milk, Food Process Eng., 2007, vol. 30, p. 472.

    Article  Google Scholar 

  25. Liu, R., Li J., and Shen, F., Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation, Renew. Energy, 2008, vol. 33, p. 1130.

    Article  CAS  Google Scholar 

  26. Cha, C., Kim, S.R., Jin, Y.-S, and Kong, H., Tuning structural durability of yeast-encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production, Biotechnol. Bioeng., 2012, vol. 109, p. 63.

    Article  CAS  PubMed  Google Scholar 

  27. Qun, J., Shanjing, Y., and Lehe, M., Tolerance of immobilized baker’s yeast in organic solvents, Enzyme Microb. Technol., 2002, vol. 30, p. 721.

    Article  Google Scholar 

  28. Cordona, C.A. and Sanchez, O.J., Fuel ethanol production: process design trends and integration opportunities, Bioresour. Technol., 2007, vol. 98, p. 2415.

    Article  CAS  Google Scholar 

  29. Kregiel, D., Berlowska, J., and Ambroziak, W., Growth and metabolic activity of conventional and non-conventional yeasts immobilized in foamed alginate, Enzyme Microb. Technol., 2013, vol. 53, p. 229.

    Article  CAS  PubMed  Google Scholar 

  30. Yong, Y.-C., Liao, Z.-H., Sun, J.-Z., Zheng, T., Jiang, R.-R., and Song, H., Enhancement of coulombic efficiency and salt tolerance in microbial fuel cells by graphite/alginate granules immobilization of Shewanella oneidensis MR-1., Process Biochem., 2013, vol. 48, p. 1947.

    Article  CAS  Google Scholar 

  31. Tuncagil, S., Odaci, D., Varis, S., Timur, S., and Toppare, L., Electrochemical polymerization of 1-(4-nitrophenyl)-2,5-di(2-thienyl)-1 H-pyrrole as a novel immobilization platform for microbial sensing, Bioelectrochem, 2009, vol. 76, p. 169.

    Article  CAS  Google Scholar 

  32. Kuhn, S.P. and Pfister, R.M., Adsorption of mixed metals and cadmium by calcium-alginate immobilized Zoogloearamigera, Appl. Microbiol. Biotechnol., 1989, vol. 31, p. 612.

    Google Scholar 

  33. Huguet, M.L., Calcium-alginate beads coated with polycationic polymers: comparison of chitosan and DEAE dextran, Process Biochem., 1996, vol. 31, p. 347.

    Article  CAS  Google Scholar 

  34. Pajic-Lijakovic, I., Playsic, M., Bugarski, B., and Nedovic, V., Ca-alginate hydrogel mechanical transformations—the influence on yeast cell growth dynamics, J. Biotechnol., 2007, vol. 129, p. 446.

    Article  CAS  PubMed  Google Scholar 

  35. Meena, K. and Raja, T.K., Immobilization of saccharomyces cerevisiae cells by gel entrapment using various metal alginates, World J. Microbiol. Biotechnol., 2006, vol. 22, p. 651.

    Article  Google Scholar 

  36. Gombotz, W.R. and Wee, S.F., Protein release from alginate matrices, Adv. Drug Delivery Rev., 1998, vol. 31, p. 267.

    Article  CAS  Google Scholar 

  37. Călinescu, I., Chipurici, P., Trifan, A., and Bădoiu, C., Immobilization of saccharomyces cereviceae for the production of bioethanol, U.P.B. Sci. Bull. Ser. B, 2012, vol. 74, p. 34.

    Google Scholar 

  38. Balci, Z., Akbulut, U., Toppare, L., Alkan, S., Bakir, U., and Yagci, Y., Immobilization of yeast cells in several conducting polymer matrices, Macromol. Sci.-Pure Appl. Chem., 2002, vol. 39, p. 183.

    Article  Google Scholar 

  39. Abdelkader, E., Nadjia, L., and Ahmed, B., Degradation study of phenazin neutral red from aqueous suspension by paper sludge, Chem. Eng. Process Technol., 2011, vol. 2, p. 1.

    Google Scholar 

  40. Iram, M., Guo, C., Guan, Y., Ishfaq, A., and Liu, H., Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres, Hazard Mater., 2010, vol. 181, p. 1039.

    Article  CAS  Google Scholar 

  41. Liu, R., Li, J., and Shen, F., Refining bioethanol from stalk juice of sweet sorghum by immobilized yeast fermentation, Renew. Energy, 2008, vol. 33, p. 1130.

    Article  CAS  Google Scholar 

  42. Stuart, W., Jason, K., and Shawn, A., Optimizing biofuel cell performance using a targeted mixed mediator combination, Electroanal., 2006, vol. 18, p. 2001.

    Article  CAS  Google Scholar 

  43. Park, D.H., Kim, S.K., Shin, I.H., and Jeong, Y.J., Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett., 2000, vol. 22, p. 1301.

    Article  CAS  Google Scholar 

  44. Park, D.H. and Zeikus, J.G., Utilization of electrically reduced neutral red by Actinobacillus succinogens: physiological function of neutral red in membrane driven fumarate reduction and energy conservation, Bacteriol., 1999, vol. 181, p. 2403.

    CAS  Google Scholar 

  45. Rehn, G., Grey, C., Branneby, C., Lindberg, L., and Adlercreutz, P., Activity and stability of different immobilized preparations of recombinant E. coli cells containing omega-transaminase, Process Biochem., 2012, vol. 47, p. 1129.

    Article  CAS  Google Scholar 

  46. Feldmann, H., Yeast Molecular Biology—a Short Compendium on Basic Features and Novel Aspects, Munich: Univ. Munich, 2005.

    Google Scholar 

  47. Zebda, A., Gondranm, C., Cinguin, P., and Cosnier, S., Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression, Sens. Actuators, 2012, vol. 173, p. 760.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Mardiana.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardiana, U., Innocent, C., Cretin, M. et al. Applicability of Alginate Film Entrapped Yeast for Microbial Fuel Cell. Russ J Electrochem 55, 78–87 (2019). https://doi.org/10.1134/S1023193519010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519010075

Keywords

Navigation