Skip to main content
Log in

Nanocomposite Ceramics on the Basis of Magnesium, Cerium, and Samarium Oxides

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A model of conductivity of nanocomposite ceramics consisting of solid-electrolyte and dielectric phases is proposed based on the assumption that the conductivity of grain boundaries between the solid-electrolyte and dielectric phases is higher than the conductivity of the volume of particles in the solid-electrolyte phase and its grain boundaries. Taking into account the size of particles, the thickness of grain boundaries, and the bulk and grain-boundary conductivities, the grain size of composite ceramics for which the conductivity may exceed the conductivity of single-phase solid-electrolyte ceramics is assessed. For testing this model, the composite samples are synthesized based on dielectric magnesium oxide and solid-electrolyte cerium oxide doped with samarium oxide. It is shown that introduction of 50 mol % magnesium oxide into composite ceramics has virtually no effect on its conductivity as compared with single-phase solid-electrolyte ceramics. This result can be explained by assuming the appearance of accelerated transport routes for oxygen ions in grain boundaries between dielectric and solid-electrolyte phases. Further dispersion, optimization of the ratio, and increase in distribution homogeneity of components can confirm the validity of the proposed conductivity model and open up the possibility of preparation of oxide solid-electrolyte materials with higher conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chebotin, V.N. and Perfilev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978 [in Russian].

    Google Scholar 

  2. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics) Vol. 1, St. Petersburg: SPb Univ., 2010 [in Russian]

    Google Scholar 

  3. Ivanov-Shits, A.K., and Murin, I.V., Ionika tverdogo tela (Solid State Ionics) Vol. 2, St. Petersburg: SPb Univ., 2010 [in Russian].

    Google Scholar 

  4. Uvarov, N.F., Kompositnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: SO RAN, 2008) [in Russian].

    Google Scholar 

  5. Liang, C.C., Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes, J. Electrochem. Soc., 1973, vol. 126, p. 1289.

    Article  Google Scholar 

  6. Liang, C.C., US Patent H01M6/18, no. 3 713 897 (USA), 1973.

    Google Scholar 

  7. Uvarov, N.F., Isupov, V.P., Sharma, V., and Shukla, A.K., Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes, Solid State Ionics, 1992, vol. 51, p. 41.

    Article  CAS  Google Scholar 

  8. Uvarov, N.F., Bokhonov, B.B., Isupov, V.P., and Hairetdinov, E.F., Nanocomposite ionic conductors in the LiSO4–Al2O3 system, Solid State Ionics, 1994, vol. 74, p. 15.

    Article  CAS  Google Scholar 

  9. Chovdary, P., Tare, V.B., and Wagner, J.B., Electrical conduction in AgJ–Al2O3 composites, J. Electrochem. Soc., 1985, vol. 132, p. 123.

    Article  Google Scholar 

  10. Jow, T. and Wagner, J.B., The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride, J. Electrochem. Soc., 1979, vol.126, p. 1963.

    Google Scholar 

  11. Fujitsu, S., Miyayama, M., and Koumoto, K., Enhancement of ionic conduction in CaF2 and BaF2 by dispersion of Al2O3, J. Mater. Sci., 1985, vol. 20, p. 2103.

    Article  CAS  Google Scholar 

  12. Saito, Y. and Maier, J., Conductivity enhancement of CaF2 by grain boundary activation with Lewis acids, Solid State Ionics, 1996, vol. 86–88, p. 581.

    Book  Google Scholar 

  13. Guo, X. and Yuan, R-Z., Grain boundary ionic conduction of zirconia-based solid electrolyte: idea and practice, Mat. Sci. Lett., 1995, vol. 14, p. 499.

    Article  CAS  Google Scholar 

  14. Brosa, S., Bouwmeester, H.J.M., and Guth, U., Electrical conductivity and thermal behavior of solid electrolytes based on alkali carbonates and sulfates, Solid State Ionics, 1997, vol. 101–103, p. 1201.

    Google Scholar 

  15. Gauthier, M. and Chamberland, A., Solid-State detectors for the potentiometric determination of gaseous oxides: I. Measurement in air, J. Electrochem. Soc., 1977, vol. 124, p. 1579.

    Article  CAS  Google Scholar 

  16. Maier, J., Enhancement of the ionic conductivity in solid-solid-dispersions by surface induced defects, Ber. Bunsen-Ges., 1984, vol. 88, p. 1057.

    Article  CAS  Google Scholar 

  17. Meyer, C., Baumann, R., Günther, A., Vashook, V., Schmiel, T., Guth, U., and Fasoulas, S., Development of a solid state sensor for nitrogen oxides with a nitrate electrolyte, Sens. Actuators, B, 2013, vol. 181, p. 77.

    Article  CAS  Google Scholar 

  18. Zhao, Y., Xia, C., Jia, L., Wang, Z., Li, H., Yu, J., and Li, Y., Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels, Int. J. Hydrogen Energy, 2013, vol. 38, p. 1649.

    Google Scholar 

  19. Kudo, T. and Ohayashi, H., Oxygen ion conduction of the fluorite-type Ce1–xLnx02–x/2 (Ln = lanthanoid element), J. Electrochem. Soc., 1975, vol. 122, p. 142.

    Article  CAS  Google Scholar 

  20. Martin, M.C. and Mecartney, M.L., Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size, Solid State Ionics, 2003, vol. 161, p. 67.

    Article  CAS  Google Scholar 

  21. Kosacki, I., Rouleau, Ch.M., Becher, P.F., Bentley, J., and Lowndes, D.H., Nanoscale effects on the ionic conductivity in highly textured YSZ thin films, Solid State Ionics, 2005, vol. 176. p. 1319.

    Book  Google Scholar 

  22. Amosov, A.P., Borovinskaya, I.P., and Merganov, A.G., Poroshkovaya tekhnologiya samorasprostranyayushchegosya vysokotemperaturnogo sinteza materialov, Uchebn. posobie (Powder Technology of the Self-Propagating High-Temperature Synthesis of Materials. Manual), Antsiferov, V.N. (Ed.), Moscow: Mashinostroenie-1, 2007 [in Russian].

    Google Scholar 

  23. Vashook, V., Zosel, J., Sperling, E., Guth, U., and Mertig, M., Nanocomposite ceramics based on Ce0.9Gd0.1O1.95 and MgO, Solid State Ionics, 2016, vol. 288, p. 98.

    Article  CAS  Google Scholar 

  24. Banerjee, S., Sujatha Devi, P., Topwal, D., Mandal, S., and Menon, K., Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: Unique effect of calcium Co-doping, Adv. Funct. Mater. 2007, vol. 17, p. 2847.

    Google Scholar 

  25. Banerjee, S. and Sujatha Devi, P., Sinter-active nanocrystalline CeO2 powder prepared by a mixed fuel process: Effect of fuel on particle agglomeration, J. Nanopart. Res., 2007, vol. 9, p. 1097.

    Article  CAS  Google Scholar 

  26. Banerjee, S. and Sujatha Devi, P., Understanding the effect of calcium on the properties of ceriaprepared by a mixed fuel process, Solid State Ionics, 2008, vol. 179, p. 661.

    Article  CAS  Google Scholar 

  27. Basu, S., Sujatha Devi, P., and Maiti, H.S., Synthesis and properties of nanocrystalline ceria powders, J. Mater. Res., 2004, vol. 19, p. 3162.

    CAS  Google Scholar 

  28. Williamson, G.K. and Hall, W.H., X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1953, vol. 1, p. 22.

    Article  CAS  Google Scholar 

  29. Atkinson, A. and Ramos, T.M.G.M., Chemicallyinduced stresses in ceramic oxygen ion-conducting membranes, Solid State Ionics, 2000, vol. 129, p. 259.

    Article  CAS  Google Scholar 

  30. Zuev, A.Yu., Vylkov, A.I., Petrov, A.N. and Tsvetkov, D.S., Defect structure and defect-induced expansion of undoped oxygen deficient perovskite LaCoO3 − δ, Solid State Ionics, 2008, vol. 179, p. 1876.

    Article  CAS  Google Scholar 

  31. Zuev, A.Yu., Petrov, AN., Vylkov, A.I., and Tsvetkov, D.S., Oxygen nonstoichiometry and defect structure of undoped and doped lanthanum cobaltites, J. Mater. Sci., 2007, vol. 42, p. 1901.

    Article  CAS  Google Scholar 

  32. Hayashi, H., Suzuki, M., and Inaba, H. Thermal expansion of Sr-and Mg-doped LaGaO3, Solid State Ionics, 2000, vol. 128, p. 131.

    Article  CAS  Google Scholar 

  33. Nadeem, M., Akhrar, M.J., and Khan, A.Y., Effects of low frequency near metal-insulator transition temperatures on polycrystalline La0.65Ca0.35Mn1 − yFeyO3 (where y = 0.05–0.10) ceramic oxides, Solid State Commun., 2005, vol. 134, p. 431.

    Article  CAS  Google Scholar 

  34. Deleebeeck, L., Fournier, J. L., and Birss. V., Comparison of Sr-doped and Sr-free La1 − xSrxMn0.5Cr0.5O3 ± δ SOFC anodes, Solid State Ionics, 2010, vol. 181, p. 1229.

    Article  CAS  Google Scholar 

  35. Lee, Y.-K., Kin, J.-Y., Lee, Y.-K., Kim, I., Moon, H.-S., Park, J.-W., Jacobson, C.P., and Visco, S.J., Conditioning effects on La1–xSrxMnO3-yttria stabilized zirconia electrodes for thin-film solid oxide fuel cells, J. Power Sources, 2003, vol. 115, p. 219.

    Article  CAS  Google Scholar 

  36. Ortiz-Vitoriano, N., Ruiz de Larramendi, I., Ruiz de Larramendi, J. I., Arriortua, M. I., and Rojo, T., Synthesis and electrochemical performance of La0.6Ca0.4Fe1–xNixO3 (x = 0.1, 0.2, 0.3) material for solid oxide fuel cell cathode, J. Power Sources, 2009, vol. 192, p. 63.

    CAS  Google Scholar 

  37. Mauvy, F., Lalanne, C., Bassat, J.-M., Grenier, J.-C., Zhao, H., Huo, L., and Stevens, P., Electrode properties of Ln2NiO4: AC impedance and DC polarization studies, J. Electrochem. Soc., 2006, vol. 153, p. A1547.

    Google Scholar 

  38. Ruiz de Larramendi, I., Ortiz, N., López-Antón, R., and Ruiz de Larramendi, J.I., Structure and impedance spectroscopy of La0.6Ca0.4Fe0.8Ni0.2O3–δ thin films grown by pulsed laser deposition, J. Power Sources, 2007, vol. 171, p. 747.

    Google Scholar 

  39. Barsoukov, E. and Macdonald, J.R., Solid state devices, in Impedance Spectroscopy–Theory, Experiment, and Applications, 2nd ed., Hoboken: Wiley, 2005, ch. 4.3, p. 282.

    Book  Google Scholar 

  40. Kudo, T. and Obayashi, H., Mixed electrical conduction in the fluorite-type Ce1 – xGdxO2 – x /2, J. Electrochem. Soc., 1976, vol. 123, p. 415.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vashook.

Additional information

Original Russian Text © V.V. Vashook, J. Zosel, M. Schelter, E. Sperling, J. Posseckardt, L.O. Vasylechko, I.V. Matsukevich, N.P. Krutko, U. Guth, M. Mertig, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 12, pp. 1124–1134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashook, V.V., Zosel, J., Schelter, M. et al. Nanocomposite Ceramics on the Basis of Magnesium, Cerium, and Samarium Oxides. Russ J Electrochem 54, 1176–1185 (2018). https://doi.org/10.1134/S1023193518140100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518140100

Keywords

Navigation