Skip to main content
Log in

Predicting Microdistribution of Metal Electrodeposition Rate from Electrolytes with Positive and Negative Leveling Power

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The relationship between the leveling power of electrolytes, the primary current distribution, and the microdistribution of the metal deposition rate is considered. For electrolytes with positive, zero, and negative leveling power, the calculations of microdistribution of metal deposition rate are carried out with regard to the data on the primary current distribution obtained experimentally for a macromodel of the microprofile under study. Good agreement is demonstrated between the microdistribution calculated using the described method and the results of direct measurements of metal distribution over the surface with the regular twodimensional microprofile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Datta, M. and Landolt, D., Fundamental aspects and applications of electrochemical microfabrication, Electrochim. Acta, 2000, vol. 45, p. 2535.

    Article  CAS  Google Scholar 

  2. Schultze, J.W. and Bressel, A., Principles of electrochemical micro-and nano-system technologies, Electrochim. Acta, 2001, vol. 47, p. 3.

    Article  CAS  Google Scholar 

  3. Razali, A.R. and Qin, Y.I., A review on micro-manufacturing, micro-forming and their key issues, Procedia Eng., 2013, vol. 53, p. 665.

    Article  Google Scholar 

  4. Fe, M.W. and Chan, W.L., A review on the state of the art microforming technologies, Intern. J. Adv. Des. Manuf. Technol., 2013, vol. 67, p. 2411.

    Article  Google Scholar 

  5. Gamburg, Y.D., Development of the electrocrystallization theory, Russ. J. Electrochem., 2016, vol. 52, p. 832.

    Article  CAS  Google Scholar 

  6. Volgin, V.M. and Davydov, A.D., Mass-transfer problems in the electrochemical systems, Russ. J. Electrochem., 2012. vol. 48, p. 565.

    Google Scholar 

  7. Korotkov, V.V., Kudryavtsev, V.N., Kruglikov, S.S., Zagorskii, D.L., Sul’yanov, S.N., and Bedin, S.A., Electrodeposition of metals of iron group into the pores of track membranes for the preparation of nanowires, Gal’vanotekh. Obrab. Poverkhn., 2015, vol. 23, no. 1, p. 24 [in Russian].

    Google Scholar 

  8. Kruglikov, S.S., Certain features of the electrodeposition of metals and alloys under potentiostatic conditions, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 1, p. 40 [in Russian].

    Google Scholar 

  9. Kruglikova, E.S., Kruglikov, S.S., and Nekrasova, N.E., On the microthrowing power of chromium plating baths, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 3, p. 4 [in Russian].

    Google Scholar 

  10. Kruglikov, S.S., Nekrasova, N.E., Kasatkin, V.E., and Kornilova, S.I., Electrodeposition of metal layers with high mechanical strength and large true surface area using pulse current, Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 4, p. 30 [in Russian].

    Google Scholar 

  11. Zagorsky, D.L., Artemev, V.V., Korotkov, V.V., Kruglikov, S.S., and Bedin S.A., Specific features of growth and stability of nanowires of different metals, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2017, vol. 11, no. 1, p. 99.

    Article  CAS  Google Scholar 

  12. Kardos, O. and Foulke, D.G., in: Adv. in Electrochemistry and Electrochemical Engineering, Delahay, P. and Tobias, C. (Eds.), New York: Wiley-Intersci., 1962, vol. 2, p. 145.

    CAS  Google Scholar 

  13. Kruglikov, S.S., Macro-and microdistribution of the deposition rate in the plating of the components of electronic devices, Gal’vanotekh. Obrab. Poverkhn., 2017, vol. 25, no. 1, p. 41 [in Russian].

    Google Scholar 

  14. De Fogelaere, M., Somme, V., Springborn, H., and Michelsen-Mohammadein, U., High-speed plating for electronic applications, Electrochim. Acta, 2001, vol. 47, p. 109.

    Google Scholar 

  15. Tajiri, K., Nakamura, T., Kabeya, Z., Yamanaka, Y., Naito, F., Kato, T., and Takasaki, T., Development of an electroformed copper lining for accelerator components, Electrochim. Acta, 2001, vol. 47, p. 143.

    Article  CAS  Google Scholar 

  16. Peeters, P., Von der Hoorn, G., Daenen, T., Kurowski, A., and Staikov, G., Properties of electroless and electroplated Ni-P and its application in microgalvanics, Electrochim. Acta, 2001, vol. 47, p. 161.

    CAS  Google Scholar 

  17. Cachet-Vivier, C., Vivier, V., Cha, C.S., and Nedelev, Yu.L.T., Electrochemistry of powder material studied by means of the cavity microelectrode, Electrochim. Acta, 2001, vol. 47, p. 181.

    Article  CAS  Google Scholar 

  18. Andricacos, P.C., Ducovic, J.Y., Horkans, J., and Deligianni H., Damascene copper electroplating for chip interconnections, IBM J. Res. Dev., 1998, vol. 42, p. 567.

    Article  CAS  Google Scholar 

  19. Healy, J.P., Pletcher, D., and Goodenough, M., The chemistry of the additives in the acid copper electroplating bath. 1. Polyethylene-glycol and chloride-ion, J. Electroanal. Chem., 1992, vol. 338, p. 155.

    Article  CAS  Google Scholar 

  20. Kelly, J.J. and West, I.C., Copper deposition in the presence of polyethylene glycol. 1. Quartz crystal microbalance study, J. Electrochem. Soc., 1998, vol. 145, p. 3472.

    Article  CAS  Google Scholar 

  21. Kelly, J.J. and West, L.C., Copper deposition in the presence of polyethylene glycol. II. Electrochemical impedance spectroscopy, J. Electrochem. Soc., 1998, vol. 145, p. 3477.

    Article  CAS  Google Scholar 

  22. Feng, Z.V. and Gewirth, A.A., Inhibition due to the interaction of polyethylene glycol, chloride, and acid copper in plating baths: a surface-enhanced Raman study, J. Phys. Chem., 2003, vol. 107, p. 9415.

    Article  CAS  Google Scholar 

  23. Doblhofer, K., Wasle, S., Soares, D.M., Weil, K.G., and Ertl, G., An EQSM study of the electrochemical copper-(II)/copper(I)/copper system in the presence of PEG and chloride ions, J. Electrochem. Soc., 2003, vol. 150, p. 657.

    Article  CAS  Google Scholar 

  24. Kondo, K., Matsumoto, T., and Watanabe, K., Role of additives for copper damascene electrodeposition. Experimental study on inhibition and acceleration effects, J. Electrochem. Soc., 2004, vol. 151, p. 250.

    Article  CAS  Google Scholar 

  25. Hebert, K.R., Role of chloride ions in the suppression of copper electrodeposition by polyethylene glycol, J. Electrochem. Soc., 2005, vol. 152, p. 283.

    Article  CAS  Google Scholar 

  26. Cao, Y., Taephaisitphongse, P., Chalupa, R., and West, A.C., Three-additive model of superfilling of copper, J. Electrochem. Soc., 2001, vol. 148, p. 466.

    Article  Google Scholar 

  27. Georgiadou, M., Veyret, D., Sani, R.L., and Alkire, R.C., Simulation of shape evolution during electrodepiosition of copper in the presence of additive, J. Electrochem. Soc., 2001, vol. 148, p. 54.

    Article  Google Scholar 

  28. West, A.C., Mayer, S., and Reid J., A superfilling model that predicts bump formation, Electrochem. Solid-State Lett., 2001, vol. 4, p. 50.

    Article  Google Scholar 

  29. Moffat, N.P., Wheeler, T., Huber, W.H., and Josell, D., Superconformal electrodeposition of copper, Electrochem. Solid-State Lett., 2001, vol. 4, p. 26.

    Article  Google Scholar 

  30. Josell, D., Wheeler, D., Huber, W.H., Bonevich, J.E., and Mofatt, T.P., A simple equation for predicting superconformal electrodeposition in submicrometer trenches, J. Electrochem. Soc., 2001, vol. 148, p. 767.

    Article  Google Scholar 

  31. Akolkarm, R. and Landau, U., A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization, J. Electrochem. Soc., 2004, vol. 151, p. 702.

    Article  CAS  Google Scholar 

  32. Moffat, N.P., Wheeler, D., Edelstein, M.D., and Josell, D., Superconformal film growth: mechanism and quantification, IBM J. Res. Dev., 2005, vol. 49, p. 19.

    Article  CAS  Google Scholar 

  33. Dow, W.P., Yen, M.Y., Lin, W.B., and Ho, S.W., Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating, J. Electrochem. Soc., 2005, vol. 152, p. 769.

    Article  Google Scholar 

  34. Akolkar, R. and Landau, U., Mechanistic analysis of the “bottom-up” fill in copper interconnect metallization, J. Electrochem. Soc., 2009, vol. 156, p. 351.

    Article  CAS  Google Scholar 

  35. Mendez, J., Akolkar, R, and Landau, U., Polyether suppressors enabling copper metallization of high aspect ratio interconnects, J. Electrochem. Soc., 2009, vol. 156, p. 474.

    Article  CAS  Google Scholar 

  36. Adolf, J. and Landau, U., Predictive analytical fill model interconnect metallization providing optimal additives concentrations, J. Electrochem. Soc., 2001, vol. 158, p. 469.

    Article  CAS  Google Scholar 

  37. Huang, Q., Bakern-O’Neal, B.C., Kelly, J.J., Broekmann, P., Wirth, K., Emmet, C., Martin, M., Hahn, M., Wagner, A., and Mayer, D., Suppressor effects during copper superfilling of sub-100nm lines, Electrochem. Solid-State Lett., 2009, vol. 12, p. 27.

    Article  CAS  Google Scholar 

  38. Huang, Q., Liu, J., and Baker-O’Neal, B., An electrochemical method of suppressor screening for Cu plating in sub-100 nm lines, J. Electrochem. Soc., 2014, vol. 161, p. 207.

    Article  CAS  Google Scholar 

  39. Rayan, K., Dunn, K., and van Euisden, J., Development of electrochemical copper deposition screening methodologies for next generation additive selection, Microelectron. Eng., 2012, vol. 92, p. 91.

    Article  CAS  Google Scholar 

  40. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley-VCH, 2001.

    Google Scholar 

  41. Boehme, L. and Landau, U., Rapid screening techniques of plating additives for bottom-up metallization of nano-scale features, J. Appl. Electrochem., 2016, vol. 46, p. 39.

    Article  CAS  Google Scholar 

  42. Gamburg, Y.D. and Zangari, G., Theory and Practice of Metal Electrodeposition, New York: Springer, 2011.

    Book  Google Scholar 

  43. Kruglikov, S.S., Kudryavtsev, N.T., and Semina E.V., On the relationship between the molecular structure of organic inhibitors and their leveling effects in nickel electrodeposition, Proc. 7th International Metal Finishing Conf. (“Interfinish 68”), Hannover, May 1968, p. 66.

    Google Scholar 

  44. Kruglikov, S.S., Surface leveling in the electrodeposition of metals, Itogi Nauki. Tekhn., Ser.: Elektrokhim., 1965, p. 117.

    Google Scholar 

  45. Kruglikov, S.S. and Kovarskii, N.Ya., Microroughnesses leveling in the electrodeposition of metals, Itogi Nauki Tekhn., Ser.; Elektrokhim, 1975, vol. 10, p. 106.

    CAS  Google Scholar 

  46. Kruglikov, S.S. and Smirnova, T.A., Leveling power: definition and methods of evaluation, Proc. 8th Congress of the International Union for Electrodeposition and Surface Finishing (“Interfinish-72”), (Zürich, Forster, 1972), p. 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Kruglikov.

Additional information

Original Russian Text © S.S. Kruglikov, N.V. Titova, N.E. Nekrasova, E.S. Kruglikova, A.V. Telezhkina, V.A. Brodskii, V.A. Kolesnikov, A.F. Gubin, 2019, published in Elektrokhimiya, 2019, Vol. 55, No. 1, pp. 78–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruglikov, S.S., Titova, N.V., Nekrasova, N.E. et al. Predicting Microdistribution of Metal Electrodeposition Rate from Electrolytes with Positive and Negative Leveling Power. Russ J Electrochem 54, 1195–1200 (2018). https://doi.org/10.1134/S1023193518140045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518140045

Keywords

Navigation