Skip to main content
Log in

Effects of Sintering Temperature and Press Pressure on the Microstructure and Electrochemical Behaviour of the Ag2O/GO Nanocomposite

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the effects of press pressure and sintering temperature on the microstructure and electrochemical performance of silver oxide-graphene oxide composite as a novel electrode produced by the powder metallurgy (PM) route. Scanning electron microscopy method used to investigate the microstructure of electrodes and energy dispersive X-ray spectroscopy analysis method was used for point analysis. Potentiodynamic polarization and electrochemical impedance spectroscopy methods were used to research the effects of sintering temperature and press pressure on the electrochemical behaviour in the 1.4 wt % KOH solution and electrical discharge test was used for evaluate the ultimate electrical capacity of silver oxide-zinc batteries with electrolyte of the 1.4 wt % KOH solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gregory Zhang, X., Fibrous zinc anodes for high power batteries, J. Power Sources, 2006, vol. 163, pp. 591–597.

    Article  CAS  Google Scholar 

  2. Karpinski, A.P., Makovetski, B., Russell, S.J., Serenyi, J.R., and Williams, W.C., Silver-zinc: status of technology and applications, J. Power Sources, 1999, vol. 80, pp. 53–60.

    Article  CAS  Google Scholar 

  3. Handbook of Batteries, 2nd ed., Linden, D. and Reddy, T.B., Ed., New York, 1994.

  4. Zinc-Silver Oxide Batteris, Fleischer, A. and Lander, J., New York: Wiley, 1971.

  5. Senthilkumar, M., Satyavani, T., and Srinivas Kumar, A., Effect of temperature and charge stand on electrochemical performance of silver oxide–zinc cell, J. Energy Storage, 2016, vol. 6, pp. 50–58.

    Article  Google Scholar 

  6. Venkatraman, M. and van Zee, J.W., A model for the silver–zinc battery during high rates of discharge, J. Power Sources, 2007, vol. 166, pp. 537–548.

    Article  CAS  Google Scholar 

  7. Skelton, J. and Serenyi, R., Improved silver/zinc secondary cells for underwater applications, J. Power Sources, 1997, vol. 65, pp. 39–45.

    Article  CAS  Google Scholar 

  8. Lewis, H.L., Danko, T., Himy, A., and Johnson, W., Alternative separation evaluations in model rechargeable silver–zinc cells, J. Power Sources, 1999, vol. 80, pp. 61–65.

    Article  CAS  Google Scholar 

  9. Imhof, P., Silver zinc batteries for AUV applications, in Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology, 2002.

    Google Scholar 

  10. Xiyan, Z.H. and Yutao, Z.H., A study of the lattice constant of ZrO2 during the oxidation of nanocrystalline zircaloy-4, rare metal, J. Mater. Eng., 2008, vol. 37, pp. 1142–1152.

    Google Scholar 

  11. Gandhimathinathan, S., Optical studies of Ag2O thin film prepared by electron beam evaporation method, Open J. Met., 2013, vol. 3, pp. 57–63.

    Article  CAS  Google Scholar 

  12. Dirkset, T.P., The silver oxide electrode, Technical reviews, J. Electrochem. Soc., 1959, vol. 106, pp. 453–457.

    Article  Google Scholar 

  13. Silver–Zinc Battery Phenomena and Design Principles, 1st ed., Himy, A., Ed., New York: Vantage Press, 1986.

  14. Suresh, P., Nagaraju, D.H., Shukla A.K., and Munichandraiah, N., Analysis of ac impedance of AgO–Zn cells: effects of state-of-charge, temperature and cycle-life, Electrochem. Acta, 2005, vol. 50, pp. 3262–3272.

    Article  CAS  Google Scholar 

  15. Smith, D.F. and Brown, C., Aging in chemically prepared divalent silver oxide electrodes for silver/zinc reserve batteries, J. Power Sources, 2001, vol. 96, pp. 121–127.

    Article  CAS  Google Scholar 

  16. Dallek, S., West, W.A., and Larrick, B.F., Decomposition kinetics of AgO cathode material by thermogravimetry, Electrochem. Soc., 1986, vol. 133, pp. 2451–2454.

    Article  CAS  Google Scholar 

  17. Salkind, A.J., Freeman, R.W., Weckesser, J.J., West, W.A., and Dallek, S., Self-decomposition processes in silver electrodes, J. Electrochem. Soc., 1988, vol. 135, pp. 1882–1887.

    Article  CAS  Google Scholar 

  18. Gucinski, J.A. and Slack, M., Findings of the rechargeable battery study sponsored by NATIBO (North American technology and industrial base organization), J. Power Sources, 2001, vol. 96, pp. 246–251.

    Article  CAS  Google Scholar 

  19. Torabi, F. and Aliakbar, A., A single-domain formulation for modeling and simulation of zinc–silver oxide batteries and energy storage, J. Electrochem. Soc., 2012, vol. 159, pp. A1986–A1922.

    Google Scholar 

  20. Mclarnon, F.R. and Cairns, E.J., The secondary alkaline zinc electrode, J. Electrochem. Soc., 1991, vol. 138, pp. 645–656.

    Article  CAS  Google Scholar 

  21. Choi, K.W., Bennion, D.N., and Newman, J., Engineering analysis of shape change in zinc secondary electrodes. I. Theoretical, J. Electrochem. Soc., 1976, vol. 123, pp. 1616–1627.

    Article  CAS  Google Scholar 

  22. Stachurski, Z. and Dalin, G.A., Investigation and Improvements of Zinc Electrodes for Electrochemical Cells, Final Report, New York, NY: Yardney Electric Corp., 1965, pp. 150–159.

    Google Scholar 

  23. Hamby, D. and Wirkkala, J., Further experimental tests of the convective flow theory of Zn secondary electrode shape change, I, J. Electrochem. Soc., 1978, vol. 125, pp. 1020–1026.

    Article  CAS  Google Scholar 

  24. Sunu, W.G., Transient and failure analyses of the porous zinc electrode. I. Theoretical, J. Electrochem. Soc., 1980, vol. 127, pp. 2007–2016.

    Article  CAS  Google Scholar 

  25. Kwak, W., Jung, J., Lee, H.G., Park, S.H., Aurbach, J.B., and Suna, Y.K., Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries, J. Power Sources, 2016, vol. 311, pp. 49–56.

    Article  CAS  Google Scholar 

  26. Marcano, D.C., Kosynin, D.V., and Berlin, J.M., Improved synthesis of graphene oxide, ACS Nano, 2010, vol. 4, pp. 4806–4814.

    Article  CAS  PubMed  Google Scholar 

  27. ASTM B962-14, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, ASTM International, West Conshohocken, 2014.

  28. Lopez, M., Vilche, J.R., and Arvia, A.J., Comparative voltammetric behaviour of the silver/silver oxide electrode prepared on vitreous carbon and silver substrates, J. Appl. Electrochem., 1988, vol. 18, pp. 691–698.

    Article  Google Scholar 

  29. Pierson, J.F. and Rousselot, C., Stability of reactively sputtered silver oxide films, Surf. Coat. Technol., 2005, vol. 200, pp. 276–279.

    Article  CAS  Google Scholar 

  30. Murray, B.J., Li, Q., and Newberg, J.T., Shape and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids, Nano Lett., 2005, vol. 5, pp. 2319–2324.

    Article  CAS  PubMed  Google Scholar 

  31. Mellor, J.V., Comprehensive Treatise on Inorganic and Theoretical Chemistry, London, U.K.: Longmanas, Green and Co., vol. 3, p. 457.

  32. Murray, B.J., Li, Q., Newberg, J.T., Menke, E.J., Hemminger, J.C., and Penner, R.M., Silver oxide microwires, Chem. Mater., 2005, vol. 17, pp. 6611–6618.

    Article  CAS  Google Scholar 

  33. US Patent 2738375, 1956.

  34. Breyfogle, B.E., Hung, C., Shumsky, M.G., and Switzer, J.A., Electrodeposition of silver(II) oxide films, J. Electrochem. Soc., 1996, vol. 143, pp. 2741–2746.

    Article  CAS  Google Scholar 

  35. Riedel, A.R., Quality Control for Missile Batteries, Proc. 15th Annual Power Source Conf., 1961, pp. 86–89.

    Google Scholar 

  36. Parkhurst, W.A., Dallek, S., and Larrick, B.F., Thermogravimetry— Evolved gas analysis of silver oxide cathode material, J. Electrochem. Soc., 1984, vol. 131, pp. 1739–1742.

    Article  CAS  Google Scholar 

  37. Sanghi, I. and Feischmann, F., Electrochemical behaviour of zinc in alkaline solutions, Proc. Math. Sci., 1959, vol. 49A, pp. 6–24.

    Book  Google Scholar 

  38. Smith, D.F. and Gucins J.A., Synthetic silver oxide and mercury-free zinc electrodes for silver–zinc reserve batterieski, J. Power Sources, 1999, vol. 80, pp. 66–71.

    Article  CAS  Google Scholar 

  39. Johansen, J.F and Farell, T.W., Modeling the stepped potential discharge of primary alkaline battery cathodes, J. Electrochem. Soc., 2011, vol. 158, pp. A6–A13.

    Book  Google Scholar 

  40. Bode, H. and Oliapuram, A., Elektrochemische potentiale von zinkeinkristallen in wässrigen elektrolyten, Electrochim. Acta, 1968, vol. 13, pp. 71–80.

    Article  CAS  Google Scholar 

  41. Zhutaeva, G.V., Merkulova, N.D., Shumilova, N.A., and Bagotskii, V.S., The kinetics of individual stages in the reduction of oxygen. II. Reduction of oxygen on silver in alkaline solutions, Soviet Electrochem., vol. 4, pp. 1136–1138.

  42. Farr, J.P.G. and Hampson, N.A., Reactions at solid metal electrodes. Part 1: Faradaic impedance of zinc electrodes in alkaline solution, Trans. Faraday Soc., 1966, vol. 62, pp. 3493–3501.

    Article  CAS  Google Scholar 

  43. Wales, C.P. and Burbank, J., Oxides on the silver electrode. II. X-ray diffraction studies of the working silver electrode, J. Electrochem. Soc., 1965, vol. 112, pp. 13–16.

    Article  CAS  Google Scholar 

  44. Wilburn, N.T., Reliability program on high-rate zincsilver oxide batteries, Proc. 15th Annual Power Sources Conf., 1961.

    Google Scholar 

  45. Poa, S.P. and Lee, S.J., Experimental optimization of alkaline zinc-silver oxide primary cell with respect to the zinc electrode preparation and composition, J. Appl. Electrochem., 1979, vol. 9, pp. 307–313.

    Article  CAS  Google Scholar 

  46. Chen, J.S. and Wang, L.F., Evaluation of calcium-containing zinc electrodes in zinc/silver oxide cells, J. Appl. Electrochem., 1996, vol. 26, pp. 227–227.

    Article  CAS  Google Scholar 

  47. Sebborn, W.S., The nature of spongy zinc deposits, obtained by the electrolysis of aqueous solutions of zinc sulphate, Trans. Faraday Soc., 1933, vol. 29, pp. 825–829.

    Article  CAS  Google Scholar 

  48. ACI 222R-01, Protection of Metals in Concrete against Corrosion, American Concrete Institute, Michigan, USA, 2001.

  49. Jones, D.A., Principles and Prevention of Corrosion, Upper Saddle River, NJ: Prentice-Hall, 1996.

    Google Scholar 

  50. Groysman, A., Corrosion for Everybody, Springer, 2010.

    Book  Google Scholar 

  51. Stern, M. and Geary, A., The mechanism of passivating-type inhibitors, J. Electrochem. Soc., 1958, vol. 105, pp. 638–647.

    Article  CAS  Google Scholar 

  52. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy, Theory, Experiment, and Applications, 2nd ed., NY: Wiley, 2005.

    Book  Google Scholar 

  53. Li, Y.H., Rao, G.B., Rong, L., Li, Y., and Ke, W., Effect of pores on corrosion characteristics of porous NiTi alloy in simulated body fluid, Mater. Sci. Eng., 2003, vol. 363, pp. 356–359.

    Article  CAS  Google Scholar 

  54. Kazemi, A., Faghihi-Sani, M.A., Nayyeri, M.J., Mohammadi, M., and Hajfathalian, M., Effect of zircon content on chemical and mechanical behavior of silica-based ceramic cores, Ceram. Int., 2014, vol. 40, pp. 1093–1098.

    Article  CAS  Google Scholar 

  55. Frank, H.A., Long, W.L., and Uchiyama, A.A., Impedance of silver oxide-zinc cells, J. Electrochem. Soc., 1971, vol. 123, pp. 1–9.

    Article  Google Scholar 

  56. Brug, G.J., Eden, A.L.G., Rehbach, M.S., and Sluyters, J.H., The analysis of electrode impedances complicated by the presence of a constant phase element, J. Electroanal. Chem., 1984, vol. 176, pp. 275–295.

    Article  CAS  Google Scholar 

  57. Lasia, A., Study of electrode activities towards the hydrogen evolution reaction by a.c. impedance spectroscopy, Int. J. Hydrogen Energy, 1993, vol. 18, pp. 557–560.

    Article  CAS  Google Scholar 

  58. Roberge, P.A., Handbook of Corrosion Engineering, 2nd ed., 2012, pp. 751–643.

    Google Scholar 

  59. Bentiss, F., Lebrini, M., Lagrenee, M., Traisnel, M., Elfarouk, A., and Vezin, H., The influence of some new 2,5-disubstituted 1,3,4-thiadiazoles on the corrosion behaviour of mild steel in 1M HCl solution: AC impedance study and theoretical approach, J. Electrochim. Acta, 2007, vol. 52, pp. 6865–6872.

    Article  CAS  Google Scholar 

  60. Ashassi, H., Seifzadeh, D., and Hosseini, M.G.E.N., EN, EIS and polarization studies to evaluate the inhibition effect of 3H-phenothiazin-3-one, 7-dimethylamin on mild steel corrosion in 1M HCl solution, J. Corros. Sci., 2008, vol. 50, pp. 3363–3370.

    Google Scholar 

  61. El Achouri, M., Kertit, S., Gouttaya, H.M., Nciri, B., Bensouda, Y., Perez, L., Infante, M.R., and Elkacemi, K., Corrosion inhibition of iron in 1M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide), Prog. Org. Coat., 2001, vol. 43, pp. 267–273.

    Google Scholar 

  62. Ramesh, S. and Rajeswari, S., Corrosion inhibition of mild steel in neutral aqueous solution by new triazole derivatives, J. Electrochim. Acta, 2004, vol. 49, pp. 811–820.

    Article  CAS  Google Scholar 

  63. Tsai, S.W. and Hahn, H.T., Introduction to Composite Materials, CT, Technomic Publishing Co., 1980.

    Google Scholar 

  64. Haghi, A.K., Oluwafemi, O.S., Jose, J.P., and Maria, H.J., Composites and nanocomposites, Adv. Mater Sci., 2013, vol. 4, pp. 119–125

    Google Scholar 

  65. McBreen, J., Investigation of Zinc shape Change and Low Rate Capacity Loss in Silver Positives, Internal Report, Yardney Electric Co., 1966.

    Google Scholar 

  66. Park, S.M. and Yoo, J.S., Electrochemical impedance spectroscopy for better electrochemical measurements, Anal. Chem., 2003, vol. 75, pp. 455–461.

    Google Scholar 

  67. Nagy, G.D., The anodic behavior of silver in alkaline solutions, PhD Thesis, Toronto: Univ. of Toronto, 1964.

    Google Scholar 

  68. Orgel, E. and Dunitz, J.D., Stereochemistry of cupric compounds, Nature, 1957, vol. 179, pp. 462–465.

    Article  CAS  Google Scholar 

  69. Oxley, J.E., Improvement of Zinc Electrodes for Electrochemical Cells, Final Report, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pourfarzad.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 7S, pp. S11–S24.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourfarzad, H., Olia, M.H., Shirojan, A. et al. Effects of Sintering Temperature and Press Pressure on the Microstructure and Electrochemical Behaviour of the Ag2O/GO Nanocomposite. Russ J Electrochem 54, 1053–1066 (2018). https://doi.org/10.1134/S1023193518120078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518120078

Keywords

Navigation