Skip to main content
Log in

Study of the Process of Reversible Insertion of Lithium into Nanostructured Materials Based on Germanium

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured germanium samples prepared by electrochemical deposition from aqueous solution of 0.05 М germanium oxide onto titanium substrate are tested as the negative electrodes of lithium-ion batteries. The reversible capacity in the process of lithium insertion-extraction is found to be about 1180 mA h/g, which corresponds to the formation of Li3.05Ge alloy. The effective diffusion coefficient of lithium in germanium is shown to be 1.2 × 10–11 cm2/s. The degradation of the germanium electrode upon cycling at 0.6 С rate is less than 0.3% per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goriparti, S., Miele, E., Angelis, F.D., Fabrizio, E.D., Zaccaria, R.P., and Capiglia, C., Review on recent progress of nanostructured anode materials for Li-ion batteries. Review article, J. Power Sources, 2014, vol. 257, p.421.

    Book  Google Scholar 

  2. Hansen, M. and Anderko, K., Constitution of Binary Alloys. 2nd ed., Toronto: McGraw-Hill, 1958.

    Book  Google Scholar 

  3. Wu, S., Han, C., Iocozzia, J., Lu, M., Ge, R., Xu, R., and Lin, Z., Germanium-based nanomaterials for rechargeable batteries, Angew. Chem., Int. Ed., 2016, vol. 55, p. 7898.

    Article  CAS  Google Scholar 

  4. Kennedy, T., Brandon, M., and Ryan, K.M., Advances in the application of silicon and germanium nanowires for high-performance lithium-ion batteries, Adv. Mater., 2016, vol. 28, no. 27, p. 5696.

    Article  CAS  PubMed  Google Scholar 

  5. Schmidt, V. and Gösele, U., How nanowires grow, Science, 2007, vol. 316, p. 698.

    Article  CAS  PubMed  Google Scholar 

  6. Carim, A. I., Collins, S.M., Foley, J.M., and Maldonado, S., Benchtop electrochemical liquid–liquid–solid growth of nanostructured crystalline germanium, J. Amer. Chem. Soc., 2011, vol. 133, p. 13292.

    Article  CAS  Google Scholar 

  7. Fahrenkrug, E., Gu, J., Jeon, S., Veneman, P.A., Goldman, R.S., and Maldonado, S., Room-temperature epitaxial electrodeposition of single-crystalline germanium nanowires at the wafer scale from an aqueous solution, Nano Lett., 2014, vol. 14, p. 847.

    Article  CAS  PubMed  Google Scholar 

  8. Ma, L., Fahrenkrug, E., Gerber, E., Crowe, A. J., Venable, F., Bartlett, B. M., and Maldonado, S., High-performance polycrystalline Ge microwire film anodes for Li ion batteries, ACS Energy Lett., 2016, vol. 2, p. 238.

    Article  CAS  Google Scholar 

  9. Gu, J., Collins, S.M., Carim, A.I., Hao, X., Bartlett, B.M., and Maldonado, S., Template-free preparation of crystalline Ge nanowire film electrodes via an electrochemical liquid–liquid–solid process in water at ambient pressure and temperature for energy storage, Nano Lett., 2012, vol. 12, p. 4617.

    Article  CAS  PubMed  Google Scholar 

  10. Gromov, D.G., Pavlova, L.M., Savitskii, A.I., and Trifonov, A.Yu., Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum, Phys. Solid State, 2015, vol. 57, p. 173.

    Article  CAS  Google Scholar 

  11. Mahenderkar, N.K., Liu, Y.-C., Koza, J.A., and Switzer, J.A., Electrodeposited germanium nanowires, ACS Nano, 2014, vol. 8, p. 9524.

    Article  CAS  PubMed  Google Scholar 

  12. Kulova, T.L., Mironenko, A.A., Skundin, A.M., Rudy, A.S., Naumov, V.V., and Pukhov, D.E., Study of silicon composite for negative electrode of lithium-ion battery, Int. J. Electrochem. Sci., 2016, vol. 11, p. 1370.

    CAS  Google Scholar 

  13. Lee, G.H., Shim, H.W., and Kimn, D.W., Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes, Nano Energy, 2015, vol. 13, p. 218.

    Article  CAS  Google Scholar 

  14. Guo, W., Mei, L., Feng, Q., and Ma, J., Facile synthesis of Ge/C nanocomposite as superior battery anode material, Mater. Chem. Phys., 2015, vol. 168, p. 6.

    Article  CAS  Google Scholar 

  15. Rudawski, N.G., Yates, B.R., Holzworth, M.R., Jones, K.S., Elliman, R.G., and Volinsky, A.A., Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries, J. Power Sources, 2013, vol. 223, p. 336.

    Article  CAS  Google Scholar 

  16. Al-Obeidi, A., Kramer, D., Thompson, C.V., and Monig, R., Mechanical stresses and morphology evolution in germanium thin film electrodes during lithiation and delithiation, J. Power Sources, 2015, vol. 297, p. 472.

    Article  CAS  Google Scholar 

  17. Laforge, B., Levan-Jodin, L., Salot, R., and Billard, A., Study of germanium as electrode in thin-film battery, J. Electrochem. Soc., 2008, vol. 155, p. A181.

    Google Scholar 

  18. Ozanam, F., and Rosso, M., Silicon as anode material for Li-ion batteries, Mater. Sci. Eng. B, 2016, vol. 213, p. 2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Kulova.

Additional information

Original Russian Text © I.M. Gavrilin, V.A. Smolyaninov, A.A. Dronov, S.A. Gavrilov, A.Yu. Trifonov, T.L. Kulova, A.A. Kuz’mina, A.M. Skundin, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 10S, pp. S31–S37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilin, I.M., Smolyaninov, V.A., Dronov, A.A. et al. Study of the Process of Reversible Insertion of Lithium into Nanostructured Materials Based on Germanium. Russ J Electrochem 54, 1111–1116 (2018). https://doi.org/10.1134/S1023193518120054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518120054

Keywords

Navigation