Skip to main content
Log in

Detrending and Other Features of Data Processing in the Measurements of Electrochemical Noise

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Measurements of electrochemical noise in solid-state electrochemical cells with a heteropolycompound- based electrolyte are carried out. The noise power spectral density is calculated using various detrending methods. The impedance real component is calculated by means of the Nyquist formula. The results of the calculations are compared with the data obtained by the electrochemical impedance classical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knott, K.F., Measurement of battery noise and resistor-current noise at subaudio frequencies, Electron. Lett., 1965, vol. 1, p. 132. doi 10.1049/el:19650123

    Article  Google Scholar 

  2. Tyagai, V.A. and Luk’yanchikova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya, 1967, vol. 3, p. 316.

    CAS  Google Scholar 

  3. Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647. doi 10.1016/0013-4686(71)85075-2

    Article  CAS  Google Scholar 

  4. Grafov, B.M., On the equilibrium fluctuations in a stationary state, Elektrokhimiya, 1966, vol. 2, p. 1249.

    CAS  Google Scholar 

  5. Grafov, B.M. and Levich, V.G., On the fluctuationdissipation theorem in a stationary state, Sov. Phys.-JETP, 1968, vol. 54, p. 507.

    Google Scholar 

  6. Nyquist, H., Thermal agitation of electric charge in conductors, Phys. Rev., 1928. vol. 32, p. 110. doi 1103/PhysRev.32.110

  7. Luk’yanchikova, N.B. and Garbar, N.P., Experimental setup for measurements of low-frequency noise spectrum of photocurrent in semiconductors, Pribory i Tekhnika Eksperimenta, 1966, no. 2, p. 178.

    Google Scholar 

  8. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., 2015, vol. 51, p. 503. doi 10.1134/S1023193515060063

    Article  CAS  Google Scholar 

  9. Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu.A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., 2016, vol. 52, p. 1001. doi 10.1134/S1023193516100062

    Article  CAS  Google Scholar 

  10. Astaf’ev, M.G., Kanevskii, L.S., and Grafov, B.M., Analyzing electrochemical noise with Chebyshev’s discrete polynomials, Russ. J. Electrochem., 2007, vol. 43, p. 17. doi 10.1134/S102319350701003X

    Article  CAS  Google Scholar 

  11. Cottis, R.A., Homborg, A.M., and Mol, J.M.C., The relationship between spectral and wavelet techniques for noise analysis, Electrochim. Acta, 2016, vol. 202, p. 277. doi 10.1016/j.electacta.2015.11.148

    Article  CAS  Google Scholar 

  12. Grafova, I.B. and Grafov, B.M., Meixner wavelet transform: A tool for studying stationary discrete-time stochastic processes, Russ. J. Electrochem., 2003, vol. 39, p. 130. doi 10.1023/A:1022348606667

    Article  CAS  Google Scholar 

  13. Callen, H.B. and Welton, T.A., Irreversibility and generalized noise, Phys. Rev., 1951, vol. 83, p. 34. doi 10.1103/PhysRev.83.34

    Article  Google Scholar 

  14. Boukamp, B.A., A linear Kronig-Kramers transform test for immittance data validation, J. Electrochem. Soc., 1995, vol. 142, p. 1885. doi 10.1149/1.2044210

    Article  CAS  Google Scholar 

  15. Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337. doi 10.5006/1.3287684

    Article  CAS  Google Scholar 

  16. Homborg, A.M., Tinga, T., Zhang, X., van Westing, E.P.M., Oonincx, P.J., de Wit, J.H.W., and Mol, J.M.C., Time–frequency methods for trend removal in electrochemical noise data, Electrochim. Acta, 2012, vol. 70, p. 199. doi 10.1016/j.electacta.2012.03.062

    CAS  Google Scholar 

  17. Mansfeld, F., Sun, Z., Hsu, C.H., and Nagiub, A., Concerning trend removal in electrochemical noise measurements, Corr. Sci., 2001, vol. 43, p. 341. doi 10.1016/S0010-938X(00)00064-0

    Article  CAS  Google Scholar 

  18. Xia, D.-H. and Behnamian, Y., Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 2015, vol. 51, p. 593. doi 10.1134/S1023193515070071

    Article  CAS  Google Scholar 

  19. Kanevskii, L.S., Study and diagnostics of lithium current sources by electrochemical noise method. I. Dynamics of lithium electrode electrochemical noise in aprotic organic electrolytes, Elektrokhimicheskaya Energetika, 2008, vol. 8, p. 92.

    CAS  Google Scholar 

  20. Boyd, J.P., Chebyshev and Fourier spectral methods, Heidelberg: Springer, 1989.

    Book  Google Scholar 

  21. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. doi 10.20964/2017.03.56

    Article  CAS  Google Scholar 

  22. Roberge, P. and Beaudoin, R., Voltage noise measurements on sealed lead-acid batteries, J. Power Sources, 1989, vol. 27, p. 177. doi 10.1016/0378-7753(89)80131-4

    Article  CAS  Google Scholar 

  23. Evdokimov, Yu.K., Denisov, E.S., and Martemianov, S.A., Electrical noise of hydrogen fuel cell and diagnostic characteristic research, Nelineyniy Mir, 2009, vol. 7, p. 706.

    Google Scholar 

  24. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid. State. Electrochem., 2015, vol. 19. p. 2803. doi 10.1007/S10008-015-2855-2

    Google Scholar 

  25. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357. doi 10.1016/S0378-7753(02)00599-2

    Article  CAS  Google Scholar 

  26. Tyagai, V.A., Study of non-equilibrium electrochemical noise of the Pt–I–/ system, Elektrokhimiya, 1967, vol. 3, p. 1331.

    CAS  Google Scholar 

  27. Tyagai, V.A. and Kolbasov, G.Ya., On the nature of non-equilibrium noise in the Pt-iodine-iodide system, Elektrokhimiya, 1970, vol. 6, p. 123.

    CAS  Google Scholar 

  28. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya, 1974, vol. 10, p. 3.

    CAS  Google Scholar 

  29. Mansfeld, F., Lee, C.C., and Zhang, G., Comparison of electrochemical impedance and noise data in frequency domain, Electrochim. Acta, 1998, vol. 43, p. 435. doi 10.1016/S0013-4686(97)00060-1

    Article  CAS  Google Scholar 

  30. Singh, P.S. and Lemay, S.G., Stochastic processes in electrochemistry, Anal. Chem., 2016, vol. 88, p. 5017. doi 10.1021/acs.analchem.6b00683

    Article  CAS  PubMed  Google Scholar 

  31. Cottis, R.A., Interpretation of electrochemical noise data, Corrosion, 2001, vol. 57, p. 265. doi 10.5006/1.3290350

    Article  CAS  Google Scholar 

  32. Astafev, E.A., Universal high-resolution device for measurements of electrochemical noises, Instruments Experimental Techniques, 2018, N 1, p. 151.

    Google Scholar 

  33. Skurygin, E.F., Vorotyntsev, M.A., and Martem’yanov, S.A., Space-time fluctuations of a passive impurity concentration within the diffusion boundary layer in the turbulent flow of a fluid, J. Electroanal. Chem., 1989, vol. 259, p. 285. doi 10.1016/0022-0728(89)80052-X

    Article  Google Scholar 

  34. Treglazov, I., Leonova, L., Dobrovolsky, Yu., Ryabov, A., Vakulenko, A., and Vassiliev, S., Electrocatalytic effects in gas sensors based on low-temperature superprotonics, Sens. Actuators B, 2005, vol. 106, p. 164. doi 10.1016/j.snb.2004.05.053

    Article  CAS  Google Scholar 

  35. Ukshe, E.A. and Leonova, L.S., Potentiometric hydrogen sensors with proton conducting solid electrolytes, Russ. J. Electrochem., 1992, vol. 28, p. 1166.

    Google Scholar 

  36. Smith, S.W., The Scientist and Engineer’s Guide to Digital Signal Processing, San Diego, California, U.S.: California Technical Publishing, 1999.

    Google Scholar 

  37. Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid. State. Electrochem., 2018, vol. 22, p. 839. doi 10.1007/s10008-018-3892-4

    Google Scholar 

  38. Astaf’ev, E.A., Electrochemical Noise Measurement of Polymer Membrane Fuel Cell under Load, Russ. J. Electrochem., 2018, vol. 54, p. 554. doi 10.1134/S1023193518060034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Astafev.

Additional information

Original Russian Text © E.A. Astafev, A.E. Ukshe, L.S. Leonova, R.A. Manzhos, Yu.A. Dobrovolsky, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 8S, pp. S48–S58.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafev, E.A., Ukshe, A.E., Leonova, L.S. et al. Detrending and Other Features of Data Processing in the Measurements of Electrochemical Noise. Russ J Electrochem 54, 1117–1125 (2018). https://doi.org/10.1134/S1023193518120030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518120030

Keywords

Navigation