Skip to main content
Log in

Composition-Controllable AuPt Alloy Catalysts for Electrooxidation of Formic Acid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

AuPt alloy catalysts with various compositions have been successfully prepared simply by one-step co-reduction of Au and Pt precursors involving sodium citrate as stabilizer and reductant. XRD, TEM and EDX element mapping analysis confirmed that the resulting AuPt nanoparticles are single-phase alloys rather than random mixtures of tiny Au and Pt particles. Compared with Pt/C, alloying Au with Pt can effectively alter the kinetic process of formic acid oxidation, reducing the generation of CO-like intermediates. Au81Pt19 displays superior electrocatalytic activity and durability, ~11 times in the mass activity better than commercial Pt/C and may be of practical significance for the commercialization of direct formic acid fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uhm, S., Lee, H.J., Kwon, Y., and Lee, J., A stable and cost-effective anode catalyst structure for formic acid fuel cells, Angew. Chem., Int. Ed., 2008, vol. 47, p. 10163.

    Article  CAS  Google Scholar 

  2. Zhang, H.X., Wang, C., Wang, J.Y., Zhai, J.J., and Cai, W.B., Carbon-supported Pd−Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation, J. Phys. Chem. C, 2010, vol. 114, p. 6446.

    Article  CAS  Google Scholar 

  3. Osawa, M., Komatsu, K., Samjeske, G., Uchida, T., Ikeshoji, T., Cuesta, A., and Gutierrez, C., The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum, Angew. Chem., Int. Ed., 2011, vol. 50, p. 1159.

    Article  CAS  Google Scholar 

  4. Miki, A., Ye, S., and Osawa, M., Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions, Chem. Commun., 2002, p. 1500.

    Google Scholar 

  5. John, J., Wang, H., Rus, E.D., and Abruña, H.D., Mechanistic studies of formate oxidation on platinum in alkaline medium, J. Phys. Chem. C, 2012, vol. 116, p. 5810.

    Article  CAS  Google Scholar 

  6. Chen, Y.X., Heinen, M., Jusys, Z., and Behm, R.J., Kinetics and mechanism of the electrooxidation of formic acid—spectroelectrochemical studies in a flow cell, Angew. Chem., Int. Ed., 2006, vol. 45, p. 981.

    Article  CAS  Google Scholar 

  7. Habas, S.E., Lee, H., Radmilovic, V., Somorjai, G.A., and Yang, P., Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater., 2007, vol. 6, p. 692.

    Article  CAS  PubMed  Google Scholar 

  8. Yu, Y., Hu, Y., Liu, X. Deng, W., and Wang, X., The study of Pt@Au electrocatalyst based on Cu underpotential deposition and Pt redox replacement, Electrochim. Acta, 2009, vol. 54, p. 3092.

    Article  CAS  Google Scholar 

  9. Podlovchenko, B.I., Maksimov, Y.M., and Maslakov, K.I., Electrocatalytic properties of Au electrodes decorated with Ptsubmonolayers by galvanic displacement of copper adatoms, Electrochim. Acta, 2014, vol. 130, p. 351.

    Article  CAS  Google Scholar 

  10. Jiang, Z. and Jiang, Z.-J., Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by a H2 plasma treatment in methanol and formic acid oxidation, Electrochim. Acta, 2011, vol. 56, p. 8662.

    Article  CAS  Google Scholar 

  11. Lee, H., Habas, S.E., Somorjai, G.A., and Yang, P., Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid, J. Am. Chem. Soc., 2008, vol. 130, p. 5406.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, L.-N., Zhang, X.-T., Wang, Z.-H., Guo, S., and Li, Y.-J., Cubic superstructures composed of PtPd alloy nanocubes and their enhanced electrocatalysis for methanol oxidation, Chem. Commun., 2016, vol. 52, p. 12737.

    Article  CAS  Google Scholar 

  13. Uhm, S., Chung, S.T., and Lee, J., Activity of Pt anode catalyst modified by underpotential deposited Pb in a direct formic acid fuel cell, Electrochem. Commun., 2007, vol. 9, p. 2027.

    Article  CAS  Google Scholar 

  14. Lee, J.K., Jeon, H., Uhm, S., and Lee, J., Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells, Electrochim. Acta, 2008, vol. 53, p. 6089.

    Article  CAS  Google Scholar 

  15. Melke, J., Schoekel, A., Dixon, D., Cremers, C., Ramaker, D.E., and Roth, C., Ethanol oxidation on carbon-supported Pt, PtRu, and PtSn catalysts studied by Operando X-ray absorption spectroscopy, J. Phys. Chem. C, 2010, vol. 114, p. 5914.

    CAS  Google Scholar 

  16. Casado-Rivera, E., Volpe, D.J., Alden, L., Lind, C., Downie, C., Vázquez-Alvarez, T., Angelo, A.C., Disalvo, F.J., and Abruña, H.D., Electrocatalytic activity of ordered intermetallic phases for fuel cell applications, J. Am. Chem. Soc., 2004, vol. 126, p. 4043.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, X.-T., Zhou, L.-N., Shen, Y.-Y., Liu, H.-T., and Li, Y.-J., Superior electrocatalytic activity of ultrathin PtPdBi nanowires towards ethanol electrooxidation, RSC Adv., 2016, vol. 6, p. 58336.

    Article  CAS  Google Scholar 

  18. Zhao, Y., Ye, C., Liu, W., Chen, R., and Jiang, X., Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application, Angew. Chem., Int. Ed., 2014, vol. 53, p. 8127.

    CAS  Google Scholar 

  19. Gan, Q.-M., Tao, L., Zhou, L.-N., Zhang, X.-T., Wang, S., and Li, Y.-J., Directional coalescence growth of ultralong Au93Pt7alloy nanowires and their superior electrocatalytic performance in ethanol oxidation, Chem. Commun., 2016, vol. 52, p. 5164.

    Article  CAS  Google Scholar 

  20. Choi, J.-H., Jeong, K.-J., Dong, Y., Hanb, J., Limb, T.-H., Lee, J.-S., and Sung, Y.-E., Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells, J. Power Sources, 2008, vol. 185, p. 857.

    Article  CAS  Google Scholar 

  21. Choi, J.-H., Jeong, K.-J., Dong, Y., Han, J., Lim, T.-H., Lee, J.-S., Sung, and Y.-E., Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells, J. Power Sources, 2006, vol. 163, p. 71.

    CAS  Google Scholar 

  22. Yong, Q., Wang, C., and Le, Z.G., Decorating graphene sheets with Pt nanoparticles using sodium citrate as reductant, Appl. Surf. Sci., 2011, vol. 257, p. 10758.

    Article  CAS  Google Scholar 

  23. Vega, A.A. and Newman, R.C., Nanoporous metals fabricated through electrochemical dealloying of Ag–Au–Pt with systematic variation of Au:Pt ratio, J. Electrochem. Soc., 2014, vol. 161, p. C1.

    Google Scholar 

  24. Jin, H.-J., Wang, X.-L., Parida, S., Wang, K., Seo, M., and Weissmüller, J., Nanoporous Au−Pt alloys as large strain electrochemical actuators, Nano Lett., 2010, vol. 10, p. 187.

    Article  CAS  PubMed  Google Scholar 

  25. Xu, J., Zhang, C., Wang, X., Ji, H., Zhao, C., Wang, Y., and Zhang, Z., Fabrication of bi-modal nanoporous bimetallic Pt-Au alloy with excellent electrocatalytic performance towards formic acidoxidation, Green Chem., 2011, vol. 13, p. 1914.

    Article  CAS  Google Scholar 

  26. Li, D., Meng, F., Wang, H., Jiang, X., and Zhu, Y., Nanoporous AuPt alloy with low Pt content: a remarkable electrocatalyst with enhanced activity towards for mic acid electro-oxidation, Electrochim. Acta, 2016, vol. 190, p. 852.

    Article  CAS  Google Scholar 

  27. Xu, J.B., Zhao, T.S., and Liang, Z.X., Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells, J. Power Sources, 2008, vol. 185, p. 857.

    Article  CAS  Google Scholar 

  28. Ballarin, B., Gazzano, M., Scavetta, E., and Tonelli, D., One-step electrosynthesis of bimetallic Au–Pt nanoparticles on indium tin oxide electrodes: effect of the deposition parameters, J. Phys. Chem. C, 2009, vol. 113, p. 15148.

    Article  CAS  Google Scholar 

  29. Liu, J., Cao, L., Huang, W., and Li, Z., Preparation of AuPt alloy foam films and their superior electrocatalytic activity for the oxidation of formic acid, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 3552.

    Article  CAS  PubMed  Google Scholar 

  30. Yamauchi, Y., Tonegawa, A., Komatsu, M., Wang, H., Wang, L., Nemoto, Y., Suzuki, N., and Kuroda, K., Electrochemical synthesis of mesoporous Pt–Au binary alloys with tunable compositions for enhancement of electrochemical performance, J. Am. Chem. Soc., 2012, vol. 134, p. 5100.

    Article  CAS  PubMed  Google Scholar 

  31. Vanýsek, P., Electrochemical Series, in CRC Handbook of Chemistry and Physics, 87th ed., Lide, D.R., Ed., Boca Raton, FL: Taylor and Francis, 2007.

    Google Scholar 

  32. Yin, J., Fang, B., Luo, J., Wanjala, B., Mott, D., Loukrakpam, R., Ng, M.S., Li, Z., Hong, J., Whittingham, M.S., and Zhong, C.J., Nanoscale alloying effect of gold–platinum nanoparticles as cathode catalysts on the performance of a rechargeable lithium–oxygen battery, Nanotechnology, 2012, vol. 23, p. 305404.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, S., Shao,Y., Yin, G., and Lin, Y., Facile synthesis of PtAu alloy nanoparticles with high activity for formic acid oxidation, J. Power Sources, 2010, vol. 195, p. 1103.

    CAS  Google Scholar 

  34. Lee, J.K., Lee, J., Han, J., Lim, T.-H., Sung, Y.-E., and Tak, Y., Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell, Electrochim. Acta, 2008, vol. 53, p. 3474.

    Article  CAS  Google Scholar 

  35. Jana, N.R., Gearheart, L., and Murphy, C.J., Seedmediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater., 2001, vol. 13, p. 1389.

    Article  CAS  Google Scholar 

  36. Cabello, G., Davoglio, R.A., Hartl, F.W., Marco, J.F., Pereira, E.C., Biaggio, S.R., Varela, H., and Cuesta, A., Microwave-assisted synthesis of Pt–Au nanoparticles with enhanced electrocatalytic activity for the oxidation of formic acid, Electrochim. Acta, 2017, vol. 224, p. 56.

    Article  CAS  Google Scholar 

  37. Ponec, V. and Bond, G.C., Catalysis by Metals and Alloys, Amsterdam: Elsevier, 1995.

    Google Scholar 

  38. Luo, J., Maye, M.M., Petkov, V., Kariuki, N.N., Wang, L.Y., Njoki, P., Mott, D., Lin, Y., and Zhong, C.J., Phase properties of carbon-supported gold-platinum nanoparticles with different bimetallic compositions, Chem. Mater., 2005, vol. 17, p. 3086.

    Article  CAS  Google Scholar 

  39. Vidaliglesias, F.J., Aránais, R.M., Sollagullón, J., Herrero, E., and Feliu, J.M., Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes, ACS Catal., 2012, vol. 2, p. 901.

    Article  CAS  Google Scholar 

  40. Hu, J., Li, H., Gan, Q.-M., and Li, Y.-J., Threedimensional porous Au nanocoral structure decorated with Pt submonolayer via galvanic displacement of copper adatoms for electrooxidation of formic acid, Russ. J. Electrochem., 2016, vol. 52, p. 355.

    Article  CAS  Google Scholar 

  41. Kim, Y., Kim, H.J., Kim, Y.S., Choi, S.M., Seo, M.H., and Kim, W.B., Shape-and composition-sensitive activity of Pt and PtAu catalysts for formic acid electrooxidation, J. Phys. Chem. C, 2012, vol. 116, p. 18093.

    CAS  Google Scholar 

  42. Zhang, S., Shao, Y., Liao, H.-G., Liu, J., Aksay, I.A., Yin, G., and Lin, Y., Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation, Chem. Mater., 2011, vol. 23, p. 1079.

    Article  CAS  Google Scholar 

  43. Peng, Z. and Yang, H., PtAu bimetallic heteronanostructures made by post-synthesis modification of Pton-Au nanoparticles, Nano Res., 2009, vol. 2, p. 406.

    Article  CAS  Google Scholar 

  44. Bus, E. and van-Bokhoven, J.A., Electronic and geometric structures of supported platinum, gold, and platinum−gold catalysts, J. Phys. Chem. C, 2007, vol. 111, p. 9761.

    Article  CAS  Google Scholar 

  45. Kumar, S.S. and Phani, K.L.N., Exploration of unalloyed bimetallic Au–Pt/C nanoparticles for oxygen reduction reaction, J. Power Sources, 2009, vol. 187, p. 19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Li.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 7S, pp. S48–S56.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, WJ., Sang, JL., Cai, L. et al. Composition-Controllable AuPt Alloy Catalysts for Electrooxidation of Formic Acid. Russ J Electrochem 54, 809–816 (2018). https://doi.org/10.1134/S1023193518110071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518110071

Keywords

Navigation