Skip to main content
Log in

Online Monitoring of the Atmospheric Corrosion of Aluminium Alloys Using Electrochemical Noise Technique

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, an electrochemical system based on electrochemical noise (EN) technique for online detection and monitoring of atmospheric corrosion of LY12CZ aluminium alloys has been established. A detecting probe and a monitoring instrument with a software have been developed to perform the electrochemical noise measurements with zero resistance ammeter (ZRA) mode. Experimental results show that the atmospheric corrosion behaviour of aluminium could be effectively detected and monitored by the analysis of the electrochemical potential and current noise, also by the noise resistance variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schindelholz, E., Risteen, B.E., and Kelly, R.G., Effect of relative humidity on corrosion of steel under Sea Salt aerosol proxies: I. NaCl, J. Electrochem. Soc., 2014, vol. 161, pp. C450–C459.

    Article  CAS  Google Scholar 

  2. Schindelholz, E., Risteen, B.E., and Kelly, R.G., Effect of relative humidity on corrosion of steel under Sea Salt aerosol proxies: II. MgCl2, artificial seawater, J. Electrochem. Soc., 2014, vol. 161, pp. C460–C470.

    Article  CAS  Google Scholar 

  3. Esmaily, M., Shahabi-Navid, M., Svensson, J.E., Halvarsson, M., Nyborg, L., Cao, Y., and Johansson, L.G., Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50, Corros. Sci., 2015, vol. 90, pp. 420–433.

    Article  CAS  Google Scholar 

  4. Peng, A.Y.M., Lyon, S.B., Thompson, G.E., Johnson, J.B., Wood, G.C., and Ferguson, J.M., Comparison of cross-sectional image analysis with weight change measurements for assessing non-uniform attack during corrosion testing of aluminium, Br. Corros. J., 1993, vol. 28, pp. 103–106.

    Article  CAS  Google Scholar 

  5. Thee, C., Hao, L., Dong, J., Mu, X., Wei, X., Li, X., and Ke, W., Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet–dry condition, Corros. Sci., 2014, vol. 78, pp. 130–137.

    Article  CAS  Google Scholar 

  6. Shi, Y., Tada, E., and Nishikata, A., A method for determining the corrosion rate of a metal under a thin electrolyte dilm, J. Electrochem. Soc., 2015, vol. 162, pp. C135–C139.

    Article  CAS  Google Scholar 

  7. Stratmann, M. and Streckel, H., On the atmospheric corrosion of metals which are covered with thin electrolyte layers, I. Verification of the experimental technique, Corros. Sci., 1990, vol. 30, pp. 681–696.

    Article  CAS  Google Scholar 

  8. Stratmann, M. and Streckel, H., On the atmospheric corrosion of metals which are covered with thin electrolyte layers. II. Experimental results, Corros. Sci., 1990, vol. 30, pp. 697–714.

    Article  CAS  Google Scholar 

  9. Stratmann, M., Streckel, H., Kim, K.T., and Crockett, S., On the atmospheric corrosion of metals which are covered with thin electrolyte layers, III. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers, Corros. Sci., 1990, vol. 30, pp. 715–734.

    Article  CAS  Google Scholar 

  10. Frankel, G.S., Stratmann, M., Rohwerder, M., Michalik, A., Maier, B., Dora, J., and Wicinski, M., Potential control under thin aqueous layers using a Kelvin Probe, Corros. Sci., 2007, vol. 49, pp. 2021–2036.

    Article  CAS  Google Scholar 

  11. Nishikata, A., Ichihara, Y., and Tsuru, T., An application of electrochemical impedance spectroscopy to atmospheric corrosion study, Corros. Sci., 1995, vol. 37, pp. 897–911.

    Article  CAS  Google Scholar 

  12. El-Mahdy, G.A., Nishikata, A., and Tsuru, T., Electrochemical corrosion monitoring of galvanized steel under cyclic wet–dry conditions, Corros. Sci., 2000, vol. 42, pp. 183–194.

    Article  CAS  Google Scholar 

  13. El-Mahdy, G.A., Nishikata, A., and Tsuru, T., AC impedance study on corrosion of 55% Al–Zn alloycoated steel under thin electrolyte layers, Corros. Sci., 2000, vol. 42, pp. 1509–1521.

    Article  CAS  Google Scholar 

  14. Yadav, A.P., Nishikata, A., and Tsuru, T., Electrochemical impedance study on galvanized steel corrosion under cyclic wet–dry conditions–influence of time of wetness, Corros. Sci., 2004, vol. 46, pp. 169–181.

    Article  CAS  Google Scholar 

  15. Nishikata, A., Zhu, Q., and Tada, E., Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method, Corros. Sci., 2014, vol. 87, pp. 80–88.

    Article  CAS  Google Scholar 

  16. Nishikata, A., Ichihara, Y., and Tsuru, T., Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer, Electrochim. Acta, 1996, vol. 41, pp. 1057–1062.

    Article  CAS  Google Scholar 

  17. Nishikata, A., Yamashita, Y., Katayama, H., Tsuru, T., Usami, A., Tanabe, K., and Mabuchi, H., An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet–dry condition, Corros. Sci., 1995, vol. 37, pp. 2059–2069.

    Article  CAS  Google Scholar 

  18. Nishikata, A., Takahashi, T., Hou, B.-R., and Tsuru, T., Monitoring of corrosion rate of carbon steel under wet/dry cycle conditions and its corrosion mechanism, Zairyo to Kankyo, 1994, vol. 43, pp. 188–193.

    Article  CAS  Google Scholar 

  19. Nishikata, A., Kumagai, S., and Tsuru, T., The application of AC impedance technique to atmospheric corrosion study impedance characteristics of metal/thin electrolyte layer interface, Zairyo to Kankyo, 1994, vol. 43, pp. 82–88.

    Article  CAS  Google Scholar 

  20. Nishikata, A., Ichihara, Y., Hayashi, Y., and Tsuru, T., Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron, J. Electrochem. Soc., 1997, vol. 144, pp. 1244–1252.

    Article  CAS  Google Scholar 

  21. Forsberg, J., Hedberg, J., Leygraf, C., Nordgren, J., and Duda, L.-C., The initial stages of atmospheric corrosion of iron in a saline environment studied with time-resolved in situ X-ray transmission microscopy, J. Electrochem. Soc., 2010, vol. 157, pp. C110–C115.

    Article  CAS  Google Scholar 

  22. Qiu, P., Persson, D., and Leygraf, C., Initial atmospheric corrosion of zinc induced by carboxylic acids: A quantitative in situ study, J. Electrochem. Soc., 2009, vol. 156, pp. C441–C447.

    Article  CAS  Google Scholar 

  23. Gil, H. and Leygraf, C., Initial atmospheric corrosion of copper induced by carboxylic acids: A comparative in situ study, J. Electrochem. Soc., 2007, vol. 154, pp. C611–C617.

    Article  CAS  Google Scholar 

  24. Lin, H. and Frankel, G.S., Atmospheric corrosion of Cu during constant deposition of NaCl, J. Electrochem. Soc., 2013, vol. 160, pp. C336–C344.

    Article  CAS  Google Scholar 

  25. Li, S. and Hihara, L.H., A micro-Raman spectroscopic study of marine atmospheric corrosion of carbon steel: The effect of akaganeite, J. Electrochem. Soc., 2015, vol. 162, pp. C495–C502.

    Article  CAS  Google Scholar 

  26. Feng, Z., Frankel, G.S., and Matzdorf, C.A., Quantification of accelerated corrosion testing of coated AA7075-T6, J. Electrochem. Soc., 2014, vol. 161, pp. C42–C49.

    Article  CAS  Google Scholar 

  27. Shi, J., Xia, D., Wang, J., Zhou, C., and Liu, Y., Degradation process of coated tinplate by phase space reconstruction theory, Trans. Tianjin Univ., 2013, vol. 19, pp. 92–97.

    Article  CAS  Google Scholar 

  28. Xia, D.H., Song, S.Z., Wang, J.H., Shi, J.B., Bi, H.C., and Gao, Z.M., Determination of corrosion types from electrochemical noise by phase space reconstruction theory, Electrochem. Commun., 2012, vol. 15, pp. 88–92.

    Article  CAS  Google Scholar 

  29. Wei, Y.-J., Xia, D.-H., and Song, S.-Z., Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis, Russ. J. Electrochem., 2016, vol. 52, pp. 560–575.

    Article  CAS  Google Scholar 

  30. Xia, D.H., Song, S.Z., and Behnamian, Y., Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms, Corros. Eng., Sci. Technol., 2016, vol. 51, pp. 527–544.

    Article  CAS  Google Scholar 

  31. Zhao, R., Zhang, Z., Shi, J.B., Tao, L., and Song, S.Z., Characterization of stress corrosion crack growth of 304 stainless steel by electrochemical noise and scanning Kelvin probe, J. Cent. South Univ. Technol. (Engl. Ed.), 2010, vol. 17, p. 13–18.

    Article  CAS  Google Scholar 

  32. Du, G., Li, J., Wang, W.K., Jiang, C., and Song, S.Z., Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques, Corros. Sci., 2011, vol. 53, pp. 2918–2926.

    Article  CAS  Google Scholar 

  33. Breimesser, M., Ritter, S., Seifert, H.P. Suter, T., and Virtanen, S., Application of electrochemical noise to monitor stress corrosion cracking of stainless steel in tetrathionate solution under constant load, Corros. Sci., 2012, vol. 63, pp. 129–139.

    Article  CAS  Google Scholar 

  34. Shahidi, M., Moghaddam, R.F., Gholamhosseinzadeh, M.R., and Hosseini, S.M.A., Investigation of the cathodic process influence on the electrochemical noise signals arising from pitting corrosion of Al alloys using wavelet analysis, J. Electroanal. Chem., 2013, vol. 693, pp. 114–121.

    Article  CAS  Google Scholar 

  35. Moshrefi, R., Mahjani, M.G., and Jafarian, M., Application of wavelet entropy in analysis of electrochemical noise for corrosion type identification, Electrochem. Commun., 2014, vol. 48, pp. 49–51.

    Article  CAS  Google Scholar 

  36. Huang, X.Q., Chen, Y., Fu, T.W., Zhang, Z., and Zhang, J.Q., Study of tin electroplating process using electrochemical impedance and noise techniques, J. Electrochem. Soc., 2013, vol. 160, pp. D530–D537.

    Article  CAS  Google Scholar 

  37. Torres-Mendoza, V., Rodriguez-Gomez, F.J., Garcia-Ochoa, E.M., and Genesca, J., The assessment of natural atmosphere corrosivity by the use of electrochemical noise analysis, Anti-Corros. Methods Mater., 2006, vol. 53, pp. 348–356.

    Article  CAS  Google Scholar 

  38. Garcia-Ochoa, E., Gonzalez-Sanchez, J., Corvo, F., Usagawa, Z., Dzib-Peerez, L., and Castaneda, A., Application of electrochemical noise to evaluate outdoor atmospheric corrosion of copper after relatively short exposure periods, J. Appl. Electrochem., 2008, vol. 38, pp. 1363–1368.

    Article  CAS  Google Scholar 

  39. Eden, D.A., M.H.a.B.S.S.i.P.m.f.c.c., ACS Symposium, Ser. 322, Dicke, R.A. and Floyd, F.L., Ed., Washington, DC: American Chem. Soc., 1986.

    Google Scholar 

  40. Chen, J.F. and Bogaerts, W.F., The physical meaning of noise resistance, Corros. Sci., 1995, vol. 37, pp. 1839–1842.

    Article  CAS  Google Scholar 

  41. Bertocci, U., Gabrielli, C., Huet, F., and Keddam, M., Noise resistance applied to corrosion measurements, 1. Theoretical analysis, J. Electrochem. Soc., 1997, vol. 144, pp. 31–37.

    Article  CAS  Google Scholar 

  42. Gusmano, G., Montesperelli, G., Pacetti, S., Petitti, A., and D’Amico, A., Electrochemical noise resistance as a tool for corrosion rate prediction, Corrosion (Houston), 1997, vol. 53, pp. 860–868.

    Article  CAS  Google Scholar 

  43. Mansfeld, F. and Xiao, H., Electrochemical noise analysis of iron exposed to NaCl solutions of different corrosivity, J. Electrochem. Soc., 1993, vol. 140, pp. 2205–2209.

    Article  CAS  Google Scholar 

  44. Mizuno, D., Suzuki, S., Fujita, S., and Hara, N., Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor, Corros. Sci., 2014, vol. 83, pp. 217–225.

    Article  CAS  Google Scholar 

  45. Hei, M., Xia, D.-H., Song, S.-Z., and Gao, Z., Sensing atmospheric corrosion of carbon steel and low-alloy steel using the electrochemical noise technique: Effects of weather conditions, Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 6, pp. 1100–1113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Hai Xia.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 8, pp. 716–722.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Xia, DH., Song, SZ. et al. Online Monitoring of the Atmospheric Corrosion of Aluminium Alloys Using Electrochemical Noise Technique. Russ J Electrochem 54, 623–628 (2018). https://doi.org/10.1134/S1023193518080025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518080025

Keywords

Navigation