Skip to main content
Log in

Electroactive Composite Pd–Polypyrrole and Its Catalytic Properties in the Reaction of Styryl Bromide Cyanation

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A composite material in the form of powder is synthesized by a redox reaction in mixed aqueous solution of Pd(NH3)4Cl2 + pyrrole. The composite consists of polypyrrole globules with palladium nanoparticles uniformly distributed inside the latter. Being applied as a film on the electrode surface, both components of this material exhibit redox activity. Palladium particles inside the composite exhibit catalytic properties in cyanation of styryl bromides, a reaction widely used in fine organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., and Smith, J., Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review, Smart Mater. Struct., 1999, vol. 7, no. 6, p. R15.

    Article  Google Scholar 

  2. Ramakrishna, S., Mayer, J., Wintermantel, E., and Leong, K.W., Biomedical applications of polymercomposite materials: a review, Compos. Sci. Technol., 2001, vol. 61, no. 9, p. 1189.

    Article  CAS  Google Scholar 

  3. Shahinpoor, M. and Kim, K.J., Ionic polymer-metal composites: I. Fundamentals, Smart Mater. Struct., 2001, vol. 10, p. 819.

    Article  CAS  Google Scholar 

  4. Vasilyeva, S.V., Vorotyntsev, M.A., Bezverkhyy, I., Chassagnon, R., Heintz, O., and Lesniewska, E., Synthesis and characterization of palladium nanoparticle/polypyrrole composites, J. Phys. Chem. C, 2008, vol. 112, p. 19878.

    Article  CAS  Google Scholar 

  5. Zinovyeva, V.A., Vorotyntsev, M.A., Bezverkhyy, I., Chaumont, D., and Hierso, J.C., Highly dispersed palladium-polypyrrole nanocomposites: In-water synthesis and application for catalytic arylation of heteroaromatics by direct C–H bond activation, Adv. Funct. Mater., 2011, vol. 21, p. 1064.

    Article  CAS  Google Scholar 

  6. Magdesieva, T.V., Nikitin, O.M., Levitsky, O.A., Zinovyeva, V.A., Bezverkhyy, I., Zolotukhina, E.V., and Vorotyntsev, M.A., Polypyrrole-palladium nanoparticles composite as efficient catalyst for Suzuki-Miyaura coupling, J. Mol. Catal. A, 2012, vols. 353–354, p. 50.

    Article  CAS  Google Scholar 

  7. Magdesieva, T.V., Nikitin, O.M., Zolotukhina, E.V., Zinovyeva, V.A., and Vorotyntsev, M.A., Palladium–polypyrrole nanoparticles—catalyzed Sonogashira coupling, Mendeleev Commun., 2012, vol. 22, p. 305.

    Article  CAS  Google Scholar 

  8. Magdesieva, T.V., Nikitin, O.M., Zolotukhina, E.V., and Vorotyntsev, M.A., Palladium nanoparticles–polypyrrole composite as an efficient catalyst for cyanation of aryl halides, Electrochim. Acta, 2014, vol. 122, p. 289.

    Article  CAS  Google Scholar 

  9. Gor'kov, K.V., Zolotukhina, E.V., Mustafina, E.R., Vorotyntsev, M.A., Antipov, E.M., and Aldoshin, S.M., Electrocatalytic activity of nanostructured palladiumpolypyrrole composite in formaldehyde oxidation reaction, Dokl. Phys. Chem., 2016, vol. 467, p. 37.

    Article  CAS  Google Scholar 

  10. Gor’kov, K.V., Zolotukhina, E.V., Mustafina, E.R., and Vorotyntsev, M.A., Synthesis and electrocatalytic properties of palladium-polypyrrole nanocomposite in formaldehyde oxidation reaction, Russ. J. Electrochem., 2017, vol. 53, p. 49.

    Article  CAS  Google Scholar 

  11. Li, Y. and Qian, R., Effect of anion and solution pH on the electrochemical behavior of polypyrrole in aqueous solution, Synth. Met., 1989, vol. 28, p. 127.

    Article  Google Scholar 

  12. Jeong, M.-Ch., Pyun, Ch.H., and Yeo, I.-H., Voltammetric studies on the palladium oxides in alkaline media, J. Electrochem. Soc., 1993, vol. 140, p. 1986.

    Article  CAS  Google Scholar 

  13. Anbarasan, P., Schareina, T., and Beller, M., Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles, Chem. Soc. Rev., 2011, vol. 40, p. 5049.

    Article  CAS  PubMed  Google Scholar 

  14. Ren, Y., Yan, M., and Zhao, S., Pd-catalyzed cyanation of benzyl chlorides with nontoxic K4[Fe(CN)6], Tetrahedron Lett., 2011, vol. 52, p. 5107.

    Article  CAS  Google Scholar 

  15. Li, L.H., Pan, Z.L., Duan, X.H., and Liang, Y.M., An environmentally benign procedure for the synthesis of aryl and arylvinyl nitriles assisted by microwave in ionic liquid, Synlett, 2006, p. 2094.

    Google Scholar 

  16. Chatterjee, T., Dey, R., and Ranu, B.C., ZnO-supported Pd nanoparticle-catalyzed ligand-and additivefree cyanation of unactivated aryl halides using K4[Fe(CN)6], J. Org. Chem., 2014, vol. 79, p. 5875.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Magdesieva.

Additional information

Original Russian Text © O.M. Nikitin, T.V. Magdesieva, O.V. Polyakova, P.K. Sazonov, K.V. Gor’kov, E.V. Zolotukhina, M.A. Vorotyntsev, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 7, pp. 698–702.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, O.M., Magdesieva, T.V., Polyakova, O.V. et al. Electroactive Composite Pd–Polypyrrole and Its Catalytic Properties in the Reaction of Styryl Bromide Cyanation. Russ J Electrochem 54, 608–611 (2018). https://doi.org/10.1134/S1023193518070066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518070066

Keywords

Navigation