Skip to main content
Log in

Stabilized Zirconia-Based Nanostructured Powders for Solid-Oxide Fuel Cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

High-purity uniform powders of zirconia-based solid electrolytes stabilized with yttria (4 and 8 mol %) are synthesized by co-precipitation with subsequent annealing at different temperatures. The obtained powders were studied using X-ray analysis and transmission electron microscopy; the specific surface area was measured by nitrogen adsorption. The stabilized zirconia powder sintering was studied over temperature range from 1000 to 1600°C. The ionic conductivity of samples containing 8 mol % of yttria was 0.06–0.07 S/сm, that is comparable with that obtained with commercial solid electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burmistrov, I.N., Agarkov, D.A., Bredikhin, S.I., Nepochatov, Yu.K., Tiunova, O.V., and Zadorozhnaya, O.Yu., Multilayered electrolyte-supported SOFC based on NEVZ-ceramics membrane, ECS Trans., 2013, vol. 57, no. 1, p. 917.

    Article  CAS  Google Scholar 

  2. Suciu, C., Hoffmann, A.C., Vik, A., and Goga, F., Effect of calcination conditions and precursor proportions on the properties of YSZ nanoparticles obtained by modified sol–gel route, Chem. Eng. J., 2008, vol. 138, p. 608.

    Article  CAS  Google Scholar 

  3. Pakharukova, V.P., Moroz, E.M., Zyuzin, D.A., Zaikovskii, V.I., Tuzikov, F.V., Kosmambetova, G.R., and Strizhak, P.E., Structure characterization of nanocrystalline yttria-stabilized zirconia powders prepared via microwave-assisted synthesis, J. Phys. Chem. C, 2012, vol. 116, p. 9762.

    Article  CAS  Google Scholar 

  4. Srdic, V.V., Winterer, M., and Hahn, H., Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis, J. Amer. Ceram. Soc., 2000, vol. 83, no. 4, p. 729.

    Article  CAS  Google Scholar 

  5. Kul’met’eva V.B., Porozova S.E., and Gnedina E.S., Synthesis of nanocrystalline zirconium dioxide stabilized with yttria for low-temperature sintering, Russ. J. Non-Ferr. Met., 2013, vol. 54, no. 3, p. 239.

    Article  Google Scholar 

  6. Panthi, D., Hedayat, N., and Du, Y., A comparative study on the densification behavior of yttria-stabilized zirconia electrolyte powders, ECS Trans., 2017, vol. 78, no. 1, p. 327.

    Article  CAS  Google Scholar 

  7. Gibson, I.R., Dransfield, G.P., and Irvine, J.T.S., Sinterability of commercial 8 mol % yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity, J. Mater. Sci., 1998, vol. 33, no. 17, p. 4297.

    Article  CAS  Google Scholar 

  8. Hotza, D., Garcia, D.E., and Castro, R.H.R., Obtaining highly dense YSZ nanoceramics by pressureless, unassisted sintering, Int. Mat. Rev., 2015, vol. 60, no. 7, p. 353.

    Article  CAS  Google Scholar 

  9. Kuo, C.W., Shen, Y.H., Hung, I.M., Wen, S.B., Lee, H.E., and Wang, M.C., Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol–gel process, J. Alloy Compd., 2009, vol. 472, nos. 1–2, p. 186.

    Article  CAS  Google Scholar 

  10. Karpyuk, P.V., Kuznetsova, D.E., Bogatov, K.B., and Dosovitskii, G.A. Determination of the YAG powder particle size distribution by laser diffraction method. Industrial Lab. Diagnostics Mater., 2017, vol. 83, no. 9, p. 35. (In Russian).

    Google Scholar 

  11. Nolze, G. and Kraus, W., Powder Cell—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Cryst., 1996, vol. 29, p. 301.

    Article  Google Scholar 

  12. Williamson, G.K. and Hall, W.H., X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1953, vol. 1, no. 22, p. 22.

    Article  CAS  Google Scholar 

  13. Lamas, D.G. and Walsoe de Reca, N.E., X-ray diffraction study of compositionally homogeneous, nanocrystalline yttria-doped zirconia powders, J. Mater. Sci., 2000, vol. 35, p. 5563.

    Article  CAS  Google Scholar 

  14. Ingel, R.P. and Lewis, D., III, Lattice parameter and density for Y2O3-stabilized ZrO2, J. Amer. Ceram. Soc., 1986, vol. 69, no. 4, p. 325.

    Article  CAS  Google Scholar 

  15. Argyriou, D.N. and Howard, C.J., Re-investigation of yttria-tetragonal zirconia polycrystal (Y-TZP) by neutron powder diffraction—a cautionary tale, J. Appl. Cryst., 1995, vol. 28, p. 206.

    Article  CAS  Google Scholar 

  16. Minh, N.Q. and Takahashi, T., Science and Technology of Ceramic Fuel Cells, Amsterdam: Elsevier, 1995. p. 356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Sokolov.

Additional information

Original Russian Text © P.S. Sokolov, P.V. Karpyuk, G.A. Dosovitskiy, P.A. Volkov, N.V. Lyskov, I.V. Slyusar’, A.E. Dosovitskiy, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 6, pp. 536–543.

Presented at the IV All-Russian Conference “Fuel Cells and Fuel Cell based Power Plants” (with international participation) June 25‒29, 2017, Suzdal, Vladimir region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, P.S., Karpyuk, P.V., Dosovitskiy, G.A. et al. Stabilized Zirconia-Based Nanostructured Powders for Solid-Oxide Fuel Cells. Russ J Electrochem 54, 464–470 (2018). https://doi.org/10.1134/S1023193518060162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518060162

Keywords

Navigation