Skip to main content
Log in

Transport and Electrochemical Properties of SrFe(Al,Mo)O3–δ

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, effects of molybdenum doping on the crystal structure, stability, electrical conductivity, oxygen permeability and thermomechanical properties of Sr(Fe,Al)O3–δ-based perovskites, were studied. The electrochemical performance of model anodes of solid oxide fuel cells (SOFCs), made of SrFe0.7Mo0.3O3–δ, was assessed. Whilst the introduction of Mo cations improves structural stability with respect to the oxygen vacancy ordering processes, excessive molybdenum content leads to a worse phase and mechanical stability under oxidizing conditions. Mo-doping was shown to decrease the thermal and chemical expansivity, to reduce p-type electronic conductivity and to increase n-type electronic conduction. The oxygen permeation fluxes through gas-tight Sr0.97Fe0.75Al0.2Mo0.05O3–δ membranes are determined by both the bulk oxygen diffusion and surface exchange kinetics. The role of the latter factor increases on decreasing temperature and reducing oxygen partial pressure. Due to a relatively high electrical conductivity and moderate thermal expansion coefficients in reducing conditions, SrFe0.7Mo0.3O3–δ-based anodes show a substantially high electrochemical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouwmeester, H.J.M. and Burggraaf, A.J., Fundamentals of Inorganic Membrane Science and Technology, Amsterdam: Elsevier, 1996.

    Google Scholar 

  2. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review, J. Solid State Electrochem., 2008, vol. 12, p. 1367.

    Article  CAS  Google Scholar 

  3. Bayraktar, D., Clemens, F., Diethelm, S., Graule, T., Van herle, J., and Holtappels, P., Production and properties of substituted LaFeO3-perovskite tubular membranes for partial oxidation of methane to syngas, J. Eur. Ceram. Soc., 2007, vol. 27, p. 2455.

    Article  CAS  Google Scholar 

  4. Shaula, A.L., Kharton, V.V., Patrakeev, M.V., Waerenborgh, J.C., Rojas D.P., and Marques, F.M.B., Defect Formation and Transport in SrFe1 †xAlxO3 †δ, Ionics, 2004, vol. 10, p. 378.

    Article  CAS  Google Scholar 

  5. Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., Leonidov, I.A., Kozhevnikov, V.L., and Poeppelmeier, K.R., Electron/hole and ion transport in La1 †xSrxFeO3 †δ, J. Solid State Chem., 2003, vol. 172, p. 219.

    Article  CAS  Google Scholar 

  6. Lohne, Ø.F., Gurauskis, J., Phung, T.N., Einarsrud, M.-A., Grande, T., Bouwmeester, H.J.M., and Wiik, K., Effect of B-site substitution on the stability of La0.2Sr0.8Fe0.8B0.2O3 †δ, B = Al, Ga, Cr, Ti, Ta, Nb, Solid State Ionics, 2012, vol. 225, p. 186.

    CAS  Google Scholar 

  7. Kharton, V.V., Shaulo, A.L., Viskup, A.P., Avdeev, M., Yaremchenko, A.A., Patrakeev, M.V., Kurbakov, A.I., Naumovich, E.N., and Marques, F.M.B., Perovskitelike system (Sr,La)(Fe,Ga)O3 †δ: structure and ionic transport under oxidizing conditions, Solid State Ionics, 2002, vol. 150, p. 229.

    Article  CAS  Google Scholar 

  8. Markov, A.A., Chesnokov, K.Yu., Patrakeev, M.V., Leonidov, I.A., Chukin, A.V., Leonidova, O.N., and Kozhevnikov, V.L., Oxygen non-stoichiometry and mixed conductivity of La0.5Sr0.5Fe1 †xMnxO3 †δ, J. Solid State Electrochem., 2016, vol. 20, p. 225.

    Article  CAS  Google Scholar 

  9. Kolotygin, V.A., Tsipis, E.V., Patrakeev, M.V., Ivanov, A.I, and Kharton, V.V., Stability, mixed conductivity, and thermomechanical properties of perovskite materials for fuel cell electrodes based on La0.5A0.5Mn0.5Ti0.5O3 †δ, La0.5Ba0.5Ti0.5Fe0.5O3 †δ, and (La0.5A0.5)0.95Cr0.5Fe0.5O3 †δ (A = Ca, Ba), Russ. J. Electrochem., 2016, vol. 52, p. 628.

    Article  CAS  Google Scholar 

  10. Kharton, V.V, Waerenborgh, J.C., Rojas, D.P., Yaremchenko, A.A., Valente, A.A., Shaula, A.L., Patrakeev, M.V., Marques, F.M.B., and Rocha, J., Mössbauer Spectra and Catalytic Behavior of Perovskite-like SrFe0.7Al0.3O3 †δ, Catal. Lett., 2005, vol. 99, p. 249.

    Article  CAS  Google Scholar 

  11. Fotiev, V.A., Bazuev, G.V., and Zubkov, V.G., Synthesis and electrical properties of SrVxMo1 †xO3 solid solutions with perovskite structure, Neorganicheskiye Materialy (in Russian), 1987, vol. 23, p. 1005.

    CAS  Google Scholar 

  12. Childs, N.B., Weisenstein, A., Smith, R., Sofie, S., and Key, C., Electrical conductivity of Sr2 †xVMoO6 †δ (x = 0.0, 0.1, 0.2) double perovskites, J. Appl. Phys., 2013, vol. 113, p. 243506.

    Article  CAS  Google Scholar 

  13. Markov, A.A., Leonidov, I.A., Patrakeev, M.V., Kozhevnikov, V.L., Savinskaya, O.A., Ancharova, U.V., and Nemudry, A.P., Structural stability and electrical transport in SrFe1 †xMoxO3 †δ, Solid State Ionics, 2008, vol. 179, p. 1050.

    Article  CAS  Google Scholar 

  14. Rager, J., Zipperle, M., Sharma, A., and MacManus-Driscoll, J.L., Oxygen Stoichiometry in Sr2FeMoO6, the Determination of Fe and Mo Valence States, and the Chemical Phase Diagram of SrO–Fe3O4–MoO3, J. Amer. Ceram. Soc., 2004, vol. 87, p. 1330.

    Article  CAS  Google Scholar 

  15. Macquart, R.B., Kennedy, B.J., and Avdeev, M., Neutron diffraction study of phase transitions in perovskitetype strontium molybdate SrMoO3, J. Solid State Chem., 2010, vol. 183, p. 250.

    Article  CAS  Google Scholar 

  16. Sekiya, T., Mochida, N., and Ogawa, S., Structural study of MoO3–TeO2 glasses, J. Non-Cryst. Solids, 1995, vol. 185, p. 135.

    Article  CAS  Google Scholar 

  17. Wang, D., Su, D., and Schlögl, R., Crystallographic shear defect in molybdenum oxides: Structure and TEM of molybdenum sub-oxides Mo18O52 and Mo8O23, Cryst. Res. Technol., 2003, vol. 38, p. 153.

    Article  CAS  Google Scholar 

  18. Huang, Y.-H., Dass, R.I., Denyszyn, J.C., and Goodenough, J.B., Synthesis and characterization of Sr2MgMoO6 †δ an anode material for the solid oxide fuel cell, J. Electrochem. Soc., 2006, vol. 153. p. A1266.

    Article  CAS  Google Scholar 

  19. Martínez-Coronado, R., Alonso, J.A., and Fernández- Díaz, M.T., SrMo0.9Co0.1O3 †δ: A potential anode for intermediate-temperature solid-oxide fuel cells (IT-SOFC), J. Power Sources, 2014, vol. 258, p. 76.

    Article  CAS  Google Scholar 

  20. Kamata, K., Nakamura, T., and Sata, T., Valence stability of molybdenum in alkaline earth molybdates, Mater. Res. Bull., 1975, vol. 10, p. 373.

    Article  CAS  Google Scholar 

  21. Steiner, U. and Reichelt, W., Zum System Sr/Mo/O: Phasendiagramm, Synthese und Charakterisierung der ternären Verbindungen, Z. Naturforsch., 1998, vol. 53b, p. 110.

    Article  Google Scholar 

  22. Vasala, S., Yamauchi, H., and Karppinen, M., Role of SrMoO4 in Sr2MgMoO6 synthesis, J. Solid State Chem., 2011, vol. 184, p. 1312.

    Article  CAS  Google Scholar 

  23. Van den Bossche, M. and McIntosh, S., On the methane oxidation activity of Sr2(MgMo)2O6 †δ: a potential anode material for direct hydrocarbon solid oxide fuel cells, J. Mater. Chem., 2011, vol. 21, p. 7443.

    Article  CAS  Google Scholar 

  24. Kharton, V.V., Kovalevsky, A.V., Patrakeev, M.V., Tsipis, E.V., Viskup, A.P., Kolotygin, V.A., Yaremchenko, A.A., Shaula, A.L., Kiselev, E.A., and Waerenborgh, J.C., Oxygen Nonstoichiometry, Mixed Conductivity, and Mössbauer Spectra of Ln0.5A0.5FeO3 †δ (Ln = La–Sm, A = Sr, Ba): Effects of Cation Size, Chem. Mater., 2008, vol. 20, p. 6457.

    CAS  Google Scholar 

  25. Kharton, V.V., Waerenborgh, J.C., Viskup, A.P., Yakovlev, S., Patrakeev, M.V., Gaczyński, P., Marozau, I.P., Yaremchenko, A.A., Shaula, A.L., and Samakhval, V.V., Mixed conductivity and Mössbauer spectra of (La0.5Sr0.5)1 †xFe1 †yAlyO3 †δ (x = 0–0.05, y = 0–0.30), J. Solid State Chem., 2006, vol. 179, p. 1273.

    Article  CAS  Google Scholar 

  26. Kharton, V.V., Patrakeev, M.V., Tsipis, E.V., Avdeev, M., Naumovich, E.N., Anikina, P.V., and Waerenborgh, J.C., Oxygen nonstoichiometry, chemical expansion, mixed conductivity, and anodic behavior of Mo-substituted Sr3Fe2O7 †δ, Solid State Ionics, 2010, vol. 181, p. 1052.

    Article  CAS  Google Scholar 

  27. Tsipis, E.V., Kiselev, E.A., Kolotygin, V.A., Waerenborgh, J.C., Cherepanov, V.A., and Kharton, V.V., Mixed conductivity, Mössbauer spectra and thermal expansion of (La,Sr)(Fe,Ni)O3 †δ perovskites, Solid State Ionics, 2009, vol. 179, p. 2170.

    Google Scholar 

  28. Lü, M.F., Tsipis, E.V., Waerenborgh, J.C., Yaremchenko, A.A., Kolotygin, V.A., Bredikhin, S.I., and Kharton, V.V., Thermomechanical, transport and anodic properties of perovskite-type (La0.75Sr0.25)0.95Cr1 †xFexO3 †δ, J. Power Sources, 2012, vol. 206, p. 59.

    Article  CAS  Google Scholar 

  29. Waerenborgh, J.C., Rojas, D.P., Vyshatko, N.P., Shaula, A.L., Kharton, V.V., Marozau, I.P., and Naumovich, E.N., Fe4+ formation in brownmillerite CaAl0.5Fe0.5O2.5 + δ, Mater. Lett., 2003, vol. 57, p. 4388.

    Article  CAS  Google Scholar 

  30. Kharton, V.V., Tsipis, E.V., Marozau, I.P., Viskup, A.P., Frade, J.R., and Irvine, J.T.S., Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3 †δ, Solid State Ionics, 2007, vol. 178, p. 101.

    Article  CAS  Google Scholar 

  31. Marozau, I.P., Kharton, V.V., Viskup, A.P., Frade, J.R., and Samakhval, V.V., Electronic conductivity, oxygen permeability and thermal expansion of Sr0.7Ce0.3Mn1 †xAlxO3 †δ, J. Eur. Ceram. Soc., 2006, vol. 26, p. 1371.

    Article  CAS  Google Scholar 

  32. Kozhevnikov, V.L., Leonidov, I.A., Bahteeva, J. A., Patrakeev, M.V., Mitberg, E.B., and Poeppelmeier, K.R., Disordering and Mixed Conductivity in the Solid Solution LaSr2Fe3 †yCryO8 + δ, Chem. Mater., 2004, vol. 16, p. 5014.

    Article  CAS  Google Scholar 

  33. Kolotygin, V.A., Tsipis. E.V., Lü, M.F., Pivak, Y.V., Yarmolenko, S.N., Bredikhin, S.I., and Kharton, V.V., Functional properties of SOFC anode materials based on LaCrO3, La(Ti,Mn)O3 and Sr(Nb,Mn)O3 perovskites: A comparative analysis, Solid State Ionics, 2013, vol. 251, p. 28.

    CAS  Google Scholar 

  34. Adler, P. and Ghosh, S., Cobalt-induced ferromagnetic interactions and magnetoresistance in charge-ordered Sr2/3La1/3FeO3, Solid State Sci., 2003, vol. 5, p. 445.

    Article  CAS  Google Scholar 

  35. Adler, P. and Eriksson, S., Structural Properties, Mössbauer Spectra, and Magnetism of Perovskite-Type Oxides SrFe1 †xTixO3 †y, Z. Anorg. Allg. Chem., 2000, vol. 626, p. 118.

    CAS  Google Scholar 

  36. Markov, A.A., Savinskaya, O.A., Patrakeev, M.V., Nemudry, A.P., Leonidov, I.A., Pavlyukhin,Yu.T., Ishchenko, A.V., and Kozhevnikov, V.L., Structural features, nonstoichiometry and high-temperature transport in SrFe1 †xMoxO3 †δ, J. Solid State Chem., 2009, vol. 182, p. 799.

    CAS  Google Scholar 

  37. Battle, P.D., Gibb, T.C., and Nixon, S., A study of the ordering of oxygen vacancies in the rare-earth perovskites Sr2MFe3O8 + y by Mössbauer spectroscopy, J. Solid State Chem., 1989, vol. 79, p. 86.

    Article  CAS  Google Scholar 

  38. Möbius, H.-H., Oxygen current density coefficient of oxidic materials as a parameter for selection in development of electrodes with solid electrolytes, in: Extended Abstracts, 37th Meeting Int. Soc. Electrochem., Vilnius, USSR, 1986. vol. 1, p. 136.

    Google Scholar 

  39. Kolotygin, V.A., Tsipis, E.V., Ivanov, A.I., Fedotov, Y.A., Burmistrov, I.N., Agarkov, D.A., Sinitsyn, V.V., Bredikhin, S.I., and Kharton, V.V., Electrical, electrochemical, and thermomechanical properties of perovskite-type (La1 †xSrx)1 †yMn0.5Ti0.5O3 †δ (x = 0.15†0.75, y = 0–0.05), J. Solid State Electrochem., 2012, vol. 16, p. 2335.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolotygin.

Additional information

Original Russian Text © V.A. Kolotygin, E.V. Tsipis, A.A. Markov, M.V. Patrakeev, J.C. Waerenborgh, A.L. Shaula, V.V. Kharton, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 6, pp. 593–607.

Presented at the IV All-Russian Conference “Fuel Cells and Fuel Cell based Power Plants” (with international participation) June 25‒29, 2017, Suzdal, Vladimir region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolotygin, V.A., Tsipis, E.V., Markov, A.A. et al. Transport and Electrochemical Properties of SrFe(Al,Mo)O3–δ. Russ J Electrochem 54, 514–526 (2018). https://doi.org/10.1134/S1023193518060083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518060083

Keywords

Navigation