Skip to main content
Log in

The Effect of Particle Size on the Processes of Charging and Discharging of the LiFe0.97Ni0.03PO4/C/Ag Cathode Material

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Olivine-structured LiFe0.97Ni0.03PO4/C/Ag nanomaterials of varying dispersibility are prepared by using sol–gel synthesis with subsequent milling. The materials are certified using X-ray diffraction analysis, scanning electron microscopy, low-temperature nitrogen adsorption, and electrochemical testing under the lithium-ion battery operating conditions. The LiFe0.97Ni0.03PO4/C/Ag cathode material primary particles’ size was shown to decrease, under the intensifying of ball-milling, from 42 to 31 nm, while the material’s specific surface area increased from 48 to 65 m2/g. The discharge capacity, under slow charging–discharging (C/8), approached a theoretical one for all materials under study. It was found that under fast charging–discharging (6 C and 30 C) the discharge capacity is inversely proportional to the particles’ mean size. The discharge capacity under the 6 С current came to 75, 94, 97, and 106 mA h/g for the initial material and that milled at a rotation velocity of 300, 500, and 700 rpm, respectively. An increase in the lithium diffusion coefficient upon the samples’ intense milling is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, p. 1188.

    Article  CAS  Google Scholar 

  2. Yang, Zh., Dai, Y., Wang, Sh., and Yu, J., How to make lithium iron phosphate better: a review exploring classical modification approaches in-depth and proposing future optimization methods, J. Mater. Chem. A, 2016, vol. 4, p. 18210.

    Article  CAS  Google Scholar 

  3. Eftekhari, A., LiFePO4/C nanocomposites for lithium-ion batteries, J. Power Sources, 2017, vol. 343, p.395.

    Article  CAS  Google Scholar 

  4. Benoit, C. and Franger, S., Chemistry and electrochemistry of lithium iron phosphate, J. Solid State Electrochem., 2008, vol. 12, p.987.

    Article  CAS  Google Scholar 

  5. Amin, R., Maier, J., Balaya, P., Chen, D.P., and Lin, C.T., Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique, Solid State Ionics, 2008, vol. 179, p. 1683.

    Article  CAS  Google Scholar 

  6. Safronov, D.V., Novikova, S.A., Skundin, A.M., and Yaroslavtsev, A.B., Lithium intercalation and deintercalation processes in Li4Ti5O12 and LiFePO4, Inorg. Mater., 2012, vol. 48, p.57.

    Article  CAS  Google Scholar 

  7. Chen, Z.-Y., Zhu, H.-L., Ji, S., Fakir, R., and Linkov, V., Influence of carbon sources on electrochemical performances of LiFePO4/C composites, Solid State Ionics, 2008, vol. 179, p. 1810.

    Article  CAS  Google Scholar 

  8. Safronov, D.V., Pinus, I.Yu., Profatilova, I.A., Tarnopol’skii, V.A., Skundin, A.M., and Yaroslavtsev, A.B., Kinetics of lithium deintercalation from LiFePO4, Inorg. Mater., 2011, vol. 47, p.303.

    Article  CAS  Google Scholar 

  9. Li, H. and Zhou, H., Enhancing the performances of Li-ion batteries by carbon-coating:present and future, Chem. Commun., 2012, vol. 48, p. 1201.

    Article  CAS  Google Scholar 

  10. Gryzlov, D., Novikova, S., Kulova, T., Skundin, A., and Yaroslavtsev, A., Behavior of LiFePO4/CPVDF/Agbased cathode materials obtained using polyvinylidene fluoride as the carbon source, Materials Design, 2016, vol. 104, p.95.

    Article  CAS  Google Scholar 

  11. Tu, X., Zhou, Y., and Song, Y., Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries, Appl. Surf. Sci., 2017, vol. 400, p.329.

    Article  CAS  Google Scholar 

  12. Ornek, A., Bulut, E., Can, M., and Ozacar, M., Characteristics of nanosized LiNixFe1 -xPO4/C (x = 0.00–0.20) composite material prepared via sol–gel-assisted carbothermal reduction method, J. Solid State Electrochem., 2013, vol. 17, p. 3101.

    Article  CAS  Google Scholar 

  13. Novikova, S., Yaroslavtsev, S., Rusakov, V., Kulova, T., Skundin, A., and Yaroslavtsev, A., LiFe1 -xMx IIPO4/C (MII = Co, Ni, Mg) as cathode materials for lithiumion batteries, Electrochim. Acta, 2014, vol. 122, p.180.

    Article  CAS  Google Scholar 

  14. Liu, W., Huang, Q., and Hu, G., A novel preparation route for multi-doped LiFePO4/C from spent electroless nickel plating solution, J. Alloys Compd., 2015, vol. 632, p.185.

    Article  CAS  Google Scholar 

  15. Novikova, S., Yaroslavtsev, S., Rusakov, V., Chekannikov, A., Kulova, T., Skundin, A., and Yaroslavtsev, A., Behavior of LiFe1–yMnyPO4/C cathode materials upon electrochemical lithium intercalation/deintercalation, J. Power Sources, 2015, vol. 300, p.444.

    Article  CAS  Google Scholar 

  16. Liu, Q., Liu, W., Li, D., and Wang, Z., Synthesis and characterization of grape-like LiFe0.97M0.03PO4/C (M = Ni, CO, Mn) composites, Mater. Lett., 2016, vol. 162, p.87.

    Article  CAS  Google Scholar 

  17. Zaghib, K., Guerfi, A., Hovington, P., Vijh, A., Trudeau, M., Mauger, A., Goodenough, J.B., and Julien, C.M., Review and analysis of nanostructured olivine-based lithium recheargeable batteries: status and trends, J. Power Sources, 2013, vol. 232, p.357.

    Article  CAS  Google Scholar 

  18. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, p.826.

    Article  CAS  Google Scholar 

  19. Wang, K.-X., Li, X.-H., and Chen, J.-Sh., Surface and interface engineering of electrode materials for lithiumion batteries, Adv. Mater., 2015, vol. 27, p.527.

    Article  CAS  PubMed  Google Scholar 

  20. Chekannikov, A., Kapaev, R., Novikova, S., Tabachkova, N., Kulova, T., Skundin, A., and Yaroslavtsev, A., Na3V2(PO4)3/C/Ag nanocomposite materials for Naion batteries obtained by the modified Pechini method, J. Solid State Electrochem., 2017, vol. 21, p. 1615.

    Article  CAS  Google Scholar 

  21. Rise, S.A., Diffusion-limited Reactions, Elsevier, 1985, p.351.

    Google Scholar 

  22. Kapaev, R., Novikova, S., Kulova, T., Skundin, A., and Yaroslavtsev, A., Conductivity and electrochemical behavior of Li1–xFe1–2x(MIIMIII)xPO4 with olivine structure, J. Solid State Electrochem., 2015, vol. 19, p. 2793.

    Article  CAS  Google Scholar 

  23. Christmann, K., Introduction to Surface Physical Chemistry, Darmstadt: Springer, 1991.

    Book  Google Scholar 

  24. Andersson, A. and Thomas, J.O., The source of firstcycle capacity loss in LiFePO4, J. Power Sources, 2001, vol. 97, p.498.

    Article  Google Scholar 

  25. Kim, D.-H. and Kim, J., Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties, Electrochem. Solid-State Lett., 2006, vol. 9, p. A439.

    Article  CAS  Google Scholar 

  26. Zhang, Y., Wu, L., Zhao, J., and Yu, W., A facile precursor-separated method to synthesize nano-crystalline LiFePO4/C cathode materials, J. Electroanal. Chem., 2014, vol. 719, p.1.

    Article  CAS  Google Scholar 

  27. Oh, S.W., Myung, S.-T., Bang, H.J., Yoon, C.S., Amine, K., and Sun, Y.-K., Nanoporous structured LiFePO4 with spherical microscale particle having high volumetric capacity for lithium batteries, Electrochem. Solid-State Lett., 2009, vol. 12, p. A181.

    Article  CAS  Google Scholar 

  28. Wen, L., Hu, X., Luo, H., Li, F., and Cheng, H., Openpore LiFePO4/C microspheres with high volumetric energy density for lithium ion batteries, Particuology, 2015, vol. 22, p.24.

    Article  CAS  Google Scholar 

  29. Tabassam, L., Giuli, G., Moretti, A., Nobili, F., Marassi, R., Minicucci, M., Gunnella, R., Olivi, L., and Di Cicco, A., Structural study of LiFePO4/C–LiNiPO4 solid solutions, J. Power Sources, 2012, vol. 213, p.287.

    Article  CAS  Google Scholar 

  30. Qing, R., Yang, M.-Ch., Meng, Y.Sh., and Sigmund, W., Synthesis of LiNixFe1 -xPO4 solid solution as cathode materials for lithium ion batteries, Electrochim. Acta, 2013, vol. 108, p.827.

    Article  CAS  Google Scholar 

  31. Wilcox, J.D., Doeff, M.M., Marcinek, M., and Kostecki, R., Factors influencing the quality of carbon coatings on LiFePO4, J. Electrochem. Soc., 2007, vol. 154, p. A389.

    Article  CAS  Google Scholar 

  32. Vidano, R.P. and Fishbach, D.B., Observation of raman band shifting with excitation wavelength for carbons and graphites, Solid State Commun., 1981, vol. 39, p.341.

    Article  CAS  Google Scholar 

  33. Stenina, I. A., Bukalov, S. S., Kulova, T. L., Skundin, A. M., Tabachkova, N.Yu., and Yaroslavtsev, A.B., Influence of a Carbon Coating on the Electrochemical Properties of Lithium-Titanate-Based Nanosized Materials, Nanotechnologies in Russia, 2015, vol. 10, p.865.

    Article  CAS  Google Scholar 

  34. Smecellato, P.C., Davoglio, R.A., Biaggio, S.R., Bocchi, N., and Rocha-Filho, R.C., Alternative route for LiFePO4 synthesis: carbothermal reduction combined with microwave-assisted solid-state reaction, J. Power Sources, 2003, vol. 119–121, p.252.

    Google Scholar 

  35. Tian, X., Zhou, Y., Wu, G., and Wang, P.J., Chen controllable synthesis of porous LiFePO4 for tunable electrochemical li-insertion performance, Electrochim. Acta, 2017, vol. 229, p.316.

    Article  CAS  Google Scholar 

  36. Boldyrev, V.V., Mechanochemistry and mechanical activation of solids, Russ. Chem. Rev., 2006, vol. 75, no. 3, p. 177–189.

    Article  CAS  Google Scholar 

  37. Maier, J., Defect chemistry and ion transport in nanostructured materials: part II. Aspects of nanoionics, Solid State Ionics, 2003, vol. 157, p.327.

    Article  CAS  Google Scholar 

  38. Maier, J., Nanoionics: ion transport and electrochemical storage in confined systems, Nat. Mater., 2005, vol. 4, p.805.

    Article  CAS  PubMed  Google Scholar 

  39. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Synthesis and transport properties of membrane materials with incorporated metal nanoparticles, Mend. Comm., 2010, vol. 20, p.89.

    Article  CAS  Google Scholar 

  40. Lu, C.Z., Fey, G.T.K., and Kao, H.M., Study of LiFePO4 cathode materials coated with high surface area carbon, J. Power Sources, 2009, vol. 189, p.155.

    Article  CAS  Google Scholar 

  41. Liu, Y., Gu, J., Zhang, J., Wang, J., Nie, N., Fu, Y., Li, W., and Yu, F., Controllable synthesis of nano-sized LiFePO4/C via a high shear mixer facilitated hydrothermal method for high rate Li-ion batteries, Electrochim. Acta, 2015, vol. 173, p.448.

    Article  CAS  Google Scholar 

  42. Shen, W., Wang, Y., Yan, J., Wu, H., and Guo, Sh., Enhanced electrochemical performance of lithium iron(II) phosphate modified cooperatively via chemically reduced graphene oxide and polyaniline, Electrochim. Acta, 2015, vol. 173, p.310.

    Article  CAS  Google Scholar 

  43. Liu, T., Xia, Q., Lu, W., Xu, J., and Wu, X., A novel method of preparing LiMPO4-C nano particles with organic P source, Electrochim. Acta, 2015, vol. 174, p.120.

    Article  CAS  Google Scholar 

  44. Liu, Y., Zhang, M., Li, Y., Hu, Y., Zhu, M., Jin, H., and Li, W., Nano-sized LiFePO4/C composite with core–shell structure as cathode material for lithium ion battery, Electrochim. Acta, 2015, vol. 176, p.689.

    Article  CAS  Google Scholar 

  45. He, J., Wang, J., Zhong, H., Ding, J., and Zhang, L., Cyanoethylated carboxymethyl chitosan as water soluble binder with enhanced adhesion capability and electrochemical performances for LiFePO4 cathode, Electrochim. Acta, 2015, vol. 182, p.900.

    Article  CAS  Google Scholar 

  46. Garino, N., Bedini, A., Chiappone, A., and Gerbaldi, C., Ultrafast, low temperature microwave-assisted solvothermal synthesis of nanostructured lithium iron phosphate optimized by a chemometric approach, Electrochim. Acta, 2015, vol. 184, p.381.

    Article  CAS  Google Scholar 

  47. Bai, N., Xiang, K., Zhou, W., Lu, H., Zhao, X., and Chen, H., LiFePO4/carbon nanowires with 3D nanonetwork structure as potential high performance cathode for lithium ion batteries, Electrochim. Acta, 2016, vol. 191, p.23.

    Article  CAS  Google Scholar 

  48. Yang, X., Tu, J., Lei, M., Zuo, Z., Wu, B., and Zhou, H., Selection of carbon sources for enhancing 3D conductivity in the secondary structure of LiFePO4/C cathode, Electrochim. Acta, 2016, vol. 193, p.206.

    Article  CAS  Google Scholar 

  49. Maier, J., Nano-ionics: trivial and non-trivial size effects on ion conduction in solids, Z. Phys. Chem., 2003, vol. 217, p.415.

    Article  CAS  Google Scholar 

  50. Yaroslavtsev, A.B., Mirak’yan, A.L., Chuvaev, V.F., and Sokolova, L.N., Proton Mobility on the Surface of Some Acid Salt Crystal Hydrates, Russ. J. Inorg. Chem., 1997, vol. 42, p. 806.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skundin.

Additional information

Original Russian Text © D.Yu. Gryzlov, S.A. Novikova, T.L. Kulova, A.M. Skundin, A.B. Yaroslavtsev, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 5, pp. 507–516.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gryzlov, D.Y., Novikova, S.A., Kulova, T.L. et al. The Effect of Particle Size on the Processes of Charging and Discharging of the LiFe0.97Ni0.03PO4/C/Ag Cathode Material. Russ J Electrochem 54, 442–450 (2018). https://doi.org/10.1134/S1023193518050038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518050038

Keywords

Navigation