Skip to main content
Log in

Chemical Oxidation of LiFePO4 in Aqueous Medium as a Method for Studying Kinetics of Delithiation

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The kinetics of LiFePO4 oxidation by hydrogen peroxide in aqueous alkaline medium is studied with the use of potentiometric determination of lithium concentration in solution during delithiation. It is demonstrated that the lithium transfer through the reaction-product layer is controlled by diffusion. The activation energy and the diffusion coefficient of the species transferred in the solid phase during the chemical reaction of oxidative delithiation are determined and the parameters of this processes are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Padhi, A., Nanjundaswamy, K., and Goodenough, J., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, vol. 144, p. 1148.

    Google Scholar 

  2. Herle, P., Ellis, B., Coombs, N., and Nazar, L., Nanonetwork electronic conduction in iron and nickel olivine phosphates, Nat. Matter, 2004, vol. 3, p. 147.

    Article  CAS  Google Scholar 

  3. Molenda, J., Ojczyk, W., and Marzec, J., Electrical conductivity and reaction with lithium of LiFe1−yMnyPO4 olivine-type cathode materials, J. Power Sources, 2007, vol. 174, p. 689.

    Article  CAS  Google Scholar 

  4. Franger, S., Le Gras, F., Bourbon, C., and Rouault, H., Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties, J. Power Sources, 2003, vol. 119, p. 252.

    Article  Google Scholar 

  5. Franger, S., Le Gras, F., Bourbon, C., and Rouault, H., Optimized lithium iron phosphate for high-rate electrochemical applications, J. Electrochem. Soc., 2004, vol. 151, p. 1024.

    Article  Google Scholar 

  6. Hoshi, Y., Narita, Y., Honda, K., Ohtaki, T., Shitanda, I., and Itagaki, M., Optimization of reference electrode position in a three-electrode cell for impedance measurements in lithium-ion rechargeable battery by finite element method, J. Power Sources, 2015, vol. 288, p. 168.

    Article  CAS  Google Scholar 

  7. Scipioni, R., Jørgensen, S., Ngo, D.-T., Simonsen, S.B., Liu, Zh., Yakal-Kremsi, K.J., Wang, H., Hjelm, J., Norby, P., Barnett, S.A., and Jensen, S.H., Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodes, J. Power Sources, 2016, vol. 307, p. 259.

    Article  CAS  Google Scholar 

  8. Weichert, K., Sigle, W., van Aken, P.A., Jamnik, J., Zhu, C., Amin, R., Acartürk, T., Starke, U., and Maier, J., Phase boundary propagation in large LiFePO4 single crystals on delithiation, J. Am. Chem. Soc, 2012, vol. 134, p. 2988.

    Article  CAS  Google Scholar 

  9. Safronov, D.V., Pinus, I.Yu., Profatilova, I.A., Tarnopol’skii, V.A., Skundin, A.M., and Yaroslavtsev, A.B., Kinetics of lithium deintercalation from LiFePO4, Inorg. Mat, 2011, vol. 3, vol. 47, p. 303.

    Article  Google Scholar 

  10. Trinh, N.D., Liang, G., Gauthier, M., and Schougaard, B., A rapid solution method to determine the charge capacity of LiFePO4, J. Power Sources, 2012, vol. 200, p. 92.

    Article  CAS  Google Scholar 

  11. Jones, J.L., Hang, J.T., and Meng, Y.S., Intermittent X-ray diffraction study of kinetics of delithiation in nano-scale LiFePO4, J. Power Sources, 2009, vol. 189, p. 702.

    Article  CAS  Google Scholar 

  12. Lepage, D., Sobh, F., Kuss, C., Liang, G., and Schougaard, S.B., Delithiation kinetics study of carbon coated and carbon free LiFePO4, J. Power Sources, 2014, vol. 256, p. 61.

    Article  CAS  Google Scholar 

  13. GOST (State Standard) 61-2003 Indices of Accuracy, Correctness, Precision of Procedures of Quantitative Chemical Analysis. Estimation Methods, 2003.

  14. Chan, H.-H., Chang, Ch.-Ch., Wu., H.-Ch., Guo, Zh.-Zh., Yang., M.-H., Chiang, Y.-P., Shue, H.-Sh., and Wu, N.-L., Kinetic study on low-temperature synthesis of LiFePO4 via solid-state reaction, J. Power Sources, 2006, vol. 158, p. 550.

    Article  Google Scholar 

  15. Huang, Y., Ren, H., Peng, Zh., and Zhou, Y., Synthesis of LiFePO4/carbon composite from nano-FePO4 by a novel stearic acid assisted rheological phase method, Electrochim. Acta, 2009, vol. 55, p. 311.

    Article  CAS  Google Scholar 

  16. Zhang, W.J., Structure and performance of LiFePO4 cathode materials: A review, J. Power Sources, 2011, vol. 196, p. 2962.

    Article  CAS  Google Scholar 

  17. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, p. 826.

    Article  CAS  Google Scholar 

  18. Wittingham, M.S., Electrical energy storage and intercalation chemistry, Science, 1976, vol. 192, p. 1126.

    Article  Google Scholar 

  19. Oyama, G., Yamada, Y., Natsui, R.I., Nishimura, S.I., and Yamada, A., Kinetics of nucleation and growth in two-phase electrochemical reaction of LixFePO4, J. Phys. Chem. C, 2012, vol. 116, p. 7306.

    Article  CAS  Google Scholar 

  20. Allen, J.L., Jow, T.R., and Wolfenstine, J., Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition, Chem. Matter., 2007, vol. 19, p. 2108.

    Article  CAS  Google Scholar 

  21. Allen, J.L., Jow, T.R., and Wolfenstine, J., Analysis of the FePO4 to LiFePO4 phase transition, Solid State Electrochem., 2008, vol. 12, p. 1031.

    Article  CAS  Google Scholar 

  22. Morgan, D., Van der Ven, A., and Ceder, G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett., 2008, vol. 12, p. 1031.

    Article  Google Scholar 

  23. Li, J.Y., Yao, W.L., Martin, S., and Vaknin, D., Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries, Solid State Ionics, 2004, vol. 7, p. 30.

    Google Scholar 

  24. Wang, L., Zhou, F., Meng, Y.S., and Ceder, G., Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures, Phys. Rev. B, 2007, vol. 30, p. 76.

    Google Scholar 

  25. Rozovskii, A.Ya., Kinetika topokhimicheskikh reaktsii (Kinetics of Topochemical Reactions), Moscow: Khimiya, 1974.

    Google Scholar 

  26. Criado, J.M., About remarks on the application of the combined Kolmogorov–Erofeev–Kazeev–Avrami–Mampel equation in the kinetics of non-isothermal transformations, J. Thermal Analysis, 1980, vol. 19, p. 381.

    Article  CAS  Google Scholar 

  27. Ellis, B.L., Lee, K.T., and Nazar, L.F. Positive electrode materials for Li-ion and Li-batteries, Chem. Mater, 2010, vol. 22, p. 691.

    Article  CAS  Google Scholar 

  28. Sakovich, G.V., Zh. Fiz. Khim., 1959, no. 33, p. 636.

    CAS  Google Scholar 

  29. Yamada, Y., Hiroshi, K., Sonoyama, N., and Kanno, R., Phase change in LixFePO4, Electrochem. Solid-State Lett., 2005, vol. 8, p. 409.

    Article  Google Scholar 

  30. Zhu, Y. and Wang, C., Galvanostatic intermittent titration technique for phase-transformation electrodes, J. Phys. Chem. C, 2010, vol. 114, p. 2830.

    Article  CAS  Google Scholar 

  31. Tang, K., Yu, X., Sun, J., Li, H., and Huang, X., Kinetic analysis on LiFePO4 thin films by CV,GITT, and EIS, Electrochim. Acta, 2011, vol. 56, p. 4869.

    Article  CAS  Google Scholar 

  32. Manjunatha, H., Venkatesha, T.V., and Suresh, G.S., Kinetics of electrochemical insertion of lithium ion into LiFePO4 from aqueous 2 M Li2SO4 solution studied by potentiostatic intermittent titration technique, Electrochim. Acta, 2011, vol. 58, p. 247.

    Article  CAS  Google Scholar 

  33. Nishimura, S., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., and Yamada, A., Experimental visualization of lithium diffusion in LixFePO4, Nat. Matter, 2008, vol. 7, p. 707.

    Article  CAS  Google Scholar 

  34. Maxish, T., Zhou, F., and Ceder, G., Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies, Phys. Rev., 2006, vol. 73, p. 104301.

    Article  Google Scholar 

  35. Morgan, D., Van der Ven, A., and Ceder, G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett., 2004, vol. 7, p. 30.

    Article  Google Scholar 

  36. Scheidemantel, T.J., Ambrosch, D.C., Thonhauser, T., Badding, J.V., and Sofo, J., Transport coefficients from first-principles calculations, Phys. Rev. 2003, vol. 68, p. 125210.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kurbatov.

Additional information

Original Russian Text © A.P. Kurbatov, F.I. Malchik, A.K. Galeyeva, D.S. Davydchenko, A.K. Rakhimova, M.S. Lepikhin, D.Kh. Kamysbayev, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 3, pp. 259–268.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatov, A.P., Malchik, F.I., Galeyeva, A.K. et al. Chemical Oxidation of LiFePO4 in Aqueous Medium as a Method for Studying Kinetics of Delithiation. Russ J Electrochem 54, 225–233 (2018). https://doi.org/10.1134/S1023193518030072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518030072

Keywords

Navigation