Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 2, pp 113–152 | Cite as

Sodium-Ion Batteries (a Review)

  • A. M. Skundin
  • T. L. Kulova
  • A. B. Yaroslavtsev
Article

Abstract

State-of-the-art in the studies of sodium-ion batteries is discussed in comparison with their deeper developed lithium-ion analogs. The principal problem hindering the development of competitive sodium-ion batteries is the low effectiveness of the electrode materials at hand. The principal efforts in the formation of anodes for the sodium-ion batteries are reduced to the development of materials based on carbon, metals, alloys, and transition metal oxides. Cathode materials are searched among oxides (first of all, layered) and salt systems. Synthesis of electrolytes for the sodium-ion batteries is not sufficiently attended to. Nowadays it is sodium salt solutions in organic solvents that are dominated; however, polymer and solid electrolytes with sodium conductivity may be thought of as very perspective. Reference list contains 584 items.

Keywords

sodium-ion batteries electrode materials electrode processes sodium incorporation nonaqueous electrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nagaura, T. and Tozawa, K., Lithium ion rechargeable battery, Prog. Batteries Solar Cells, 1990, vol. 9, p. 209.Google Scholar
  2. 2.
    Julien, Ch., Mauger, A., Vijh, A., and Zaghib, K., Lithium Batteries. Science and Technology Switzerland: Springer Int. Publ., 2016, 626 p.CrossRefGoogle Scholar
  3. 3.
    Scrosati, B. and Garche, J., Lithium batteries: Status, prospects and future, J. Power Sources, 2010, vol. 195, p. 2419.CrossRefGoogle Scholar
  4. 4.
    Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium ion batteries, Russ. Chem. Rev., 2015. vol. 84, p. 826.CrossRefGoogle Scholar
  5. 5.
    Tarascon, J.-M., Key challenges in future Li-battery research, Phil. Trans. R. Soc. A, 2010, vol. 368, p. 3227.CrossRefGoogle Scholar
  6. 6.
    Skundin, A.M., Lithium-ion batteries: What is next? in: Materialy nauchno-prakticheskoy konferentsii “Aktual’nye problem I perspektivy razvitiya litievykh KhIT” (Proc. of Research–Practical Conference “Current Problems and Perspectives of Lithium Power Sources), Almaty, Respublika Kazakhstan, September 17–19, 2012, p. 16–28.Google Scholar
  7. 7.
    Slater, M.D., Kim, D., Lee, E., and Johnson, Ch.S., Sodium-ion batteries, Adv. Funct. Mat., 2013, vol. 23, p. 947.CrossRefGoogle Scholar
  8. 8.
    Sudworth, J.L., The sodium/sulphur battery, J. Power Sources, 1984, vol. 11, p. 143.CrossRefGoogle Scholar
  9. 9.
    Sudworth, J.L. and Tilley, A.R., Sodium Sulfur Battery, N. Y.: Chapman & Hall, 1985.Google Scholar
  10. 10.
    Lu, X., Xia, G., Lemmon, J.P., and Yang, Zh., Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives, J. Power Sources, 2010, vol. 195, p. 2431.CrossRefGoogle Scholar
  11. 11.
    Lu, J., Jiang, Q., and Qin, L., The research on energystoraged application of Na/S battery, Adv. Mater. Res., 2012, vol. 443–444, p. 189.CrossRefGoogle Scholar
  12. 12.
    Galloway, R.C., A Sodium/Beta-Alumina/Nickel Chloride Secondary Cell, J. Electrochem. Soc., 1987, vol. 134, p. 256.CrossRefGoogle Scholar
  13. 13.
    Coetzer, J., A new high energy density battery system, J. Power Sources, 1986, vol. 18, p. 377.CrossRefGoogle Scholar
  14. 14.
    Bohm, H. and Beyermann, G., ZEBRA batteries, enhanced power by doping, J. Power Sources, 1999, vol. 84, p. 270.CrossRefGoogle Scholar
  15. 15.
    Sudworth, J.L., The sodium/nickel chloride (ZEBRA) battery, J. Power Sources, 2001, vol. 100, p. 149.CrossRefGoogle Scholar
  16. 16.
    Dustmann, C.-H., Advances in ZEBRA batteries, J. Power Sources, 2004, vol. 127, p. 85.CrossRefGoogle Scholar
  17. 17.
    Kim, I., Park, J.-Y., Kim, Ch.H., Park, J.-W., Ahn, J.-P., Ahn, J.-H., Kim, K.-W., and Ahn, H.-J., A room temperature Na/S battery using a ß? alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode, J. Power Sources, 2016, vol. 301, p. 332.CrossRefGoogle Scholar
  18. 18.
    Kim, I., Kim, Ch.H., Choi, S.H., Ahn, J.-P., Ahn, J.-H., Kim, K.-W., Cairns, E.J., and Ahn, H.-J., A singular flexible cathode for room temperature sodium/sulfur battery, J. Power Sources, 2016, vol. 307, p. 31.CrossRefGoogle Scholar
  19. 19.
    Lu, X., Lemmon, J.P., Kim, J.Y., Sprenkle, V.L., and Yang, Zh., High energy density Na–S/NiCl2 hybrid battery, J. Power Sources, 2013, vol. 224, p. 312.CrossRefGoogle Scholar
  20. 20.
    Doeff, M.M., Ma, Y., Visco, S.J., and De Jonghe, L.C., Electrochemical Insertion of Sodium into Carbon, J. Electrochem. Soc., 1993, vol. 140, p. L169.CrossRefGoogle Scholar
  21. 21.
    Ellis, B.L. and Nazar, L.F., Sodium and sodium-ion energy storage batteries, Current Opinion in Solid State and Materials Science, 2012, vol. 16, p. 168.CrossRefGoogle Scholar
  22. 22.
    Sung-Wook, Kim, Dong-Hwa, Seo, Xiaohua, Ma, Ceder, G., and Kisuk, Kang., Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries, Advanced Energy Materials, 2012, vol. 2, p. 710.CrossRefGoogle Scholar
  23. 23.
    Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., and Rojo, T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems (Review), Energy Environ. Sci., 2012, vol. 5, p. 5884.CrossRefGoogle Scholar
  24. 24.
    Pan, H., Hu, Y.-S., and Chen, L., Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy and Environ. Sci., 2013, vol. 6, p. 2338.CrossRefGoogle Scholar
  25. 25.
    Jin, Y., Sun, X., Yu, Y., Ding, C., Chen, C., and Guan, Y., Research progress in sodium-ion battery materials for energy storage, Progress in Chemistry, 2014, vol. 26, p. 582.Google Scholar
  26. 26.
    Li, H., Wu, C., Wu, F., and Bai, Y., Sodium ion battery: A promising energy-storage candidate for supporting renewable electricity, Acta Chimica Sinica, 2014, vol. 72, p. 21.CrossRefGoogle Scholar
  27. 27.
    Yabuuchi, N., Kubota, K., Dahbi, M., and Komaba, S., Research development on sodium-ion batteries (Review), Chem. Rev., 2014, vol. 114, p. 11636.CrossRefGoogle Scholar
  28. 28.
    Kubota, K. and Komaba, S., Review—Practical Issues and Future Perspective for Na-Ion Batteries, J. Electrochem. Soc, 2015, vol. 162, p. A2538.CrossRefGoogle Scholar
  29. 29.
    Kim, H., Kim, H., Ding, Z., Lee, M.H., Lim, K., Yoon, G., and Kang, K., Recent Progress in Electrode Materials for Sodium-Ion Batteries (Review), Adv. Energy Mat., 2016, vol. 6, 1600943. doi 10.1002/aenm.201600943CrossRefGoogle Scholar
  30. 30.
    Nithya, C. and Gopukumar, S., Sodium ion batteries: A newer electrochemical storage (Review), Wiley Interdisciplinary Reviews: Energy and Environment, 2015, vol. 4, p. 253.CrossRefGoogle Scholar
  31. 31.
    Hong, S.Y., Kim, Y., Park, Y., Choi, A., Choi, N.-S., and Lee, K.T., Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy and Environ. Sci., 2013, vol. 6, p. 2067.CrossRefGoogle Scholar
  32. 32.
    Chevrier, V.L. and Ceder, G., Challenges for Na-ion Negative Electrodes, J. Electrochem. Soc., 2011, vol. 158, p. A1011.CrossRefGoogle Scholar
  33. 33.
    He, H., Wang, H., Tang, Y., and Liu, Y., Current studies of anode materials for sodium-ion battery, Progress in Chemistry, 2014, vol. 26, p. 572.Google Scholar
  34. 34.
    Dahbi, M., Yabuuchi, N., Kubota, K., Tokiwa, K., and Komaba, S., Negative electrodes for Na-ion batteries (Review), Phys. Chem. Chem. Phys., 2014, vol. 16, p. 15007.CrossRefGoogle Scholar
  35. 35.
    Kim, Y., Ha, K-H., Oh, S.M., and Lee, K.T., High-Capacity Anode Materials for Sodium-Ion Batteries, Chemistry—A European Journal, 2014, vol. 20, p. 11980.CrossRefGoogle Scholar
  36. 36.
    Wang, L.P., Yu, L., Srinivasan, M., Xu, Z.J., and Wang, X., Recent developments in electrode materials for sodium-ion batteries (Review), J. Mater. Chem. A, 2015, vol. 3, p. 9353.CrossRefGoogle Scholar
  37. 37.
    Bommier, C. and Ji, X., Recent development on anodes for Na-ion batteries (Review), Israel J. Chem., 2015, vol. 55, p. 486.CrossRefGoogle Scholar
  38. 38.
    Kang, H., Liu, Y., Cao, K., Zhao, Y., Jiao, L., Wang, Y., and Yuan, H., Update on anode materials for Na-ion batteries (Review), J. Mater. Chem. A, 2015, vol. 3, p. 17899.CrossRefGoogle Scholar
  39. 39.
    Stevens, D.A. and Dahn, J.R., High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries, J. Electrochem. Soc., 2000, vol. 147, p. 1271.CrossRefGoogle Scholar
  40. 40.
    Stevens, D.A. and Dahn, J.R., The Mechanisms of Lithium and Sodium Insertion in Carbon Materials, J. Electrochem. Soc., 2001, vol. 148, p. A803.CrossRefGoogle Scholar
  41. 41.
    Alcántara, R., Ortiz, G.F., Lavela, P., Tirado, J.L., Stoyanova, R., and Zhecheva, E., EPR, NMR, and electrochemical studies of surface-modified carbon microbeads, Chem. Mater., 2006, vol. 18, p. 2293.CrossRefGoogle Scholar
  42. 42.
    Tsai, P.-C., Chung, S.-C., Lin, S.-K., and Yamada, A., Ab initio study of sodium intercalation into disordered carbon, J. Mater. Chem. A, 2015, vol. 3, p. 9763.CrossRefGoogle Scholar
  43. 43.
    Gotoh, K., Ishikawa, T., Shimadzu, S., Yabuuchi, N., Komaba, S., Takeda, K., Goto, A., Deguchi, K., Ohki, S., Hashi, K., Shimizu, T., and Ishida, H., NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery, J. Power Sources, 2013, vol. 225, p. 137.CrossRefGoogle Scholar
  44. 44.
    Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., and Fujiwara, K., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries, Adv. Funct. Mat., 2011, vol. 21, p. 3859.CrossRefGoogle Scholar
  45. 45.
    Komaba, S., Ishikawa, T., Yabuuchi, N., Murata, W., Ito, A., and Ohsawa, Y., Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries, ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 4165.CrossRefGoogle Scholar
  46. 46.
    Zheng, P., Liu, T., and Guo, S., Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries, Sci. Reports, 2016, vol. 6, Article number 35620.CrossRefGoogle Scholar
  47. 47.
    Ponrouch, A., Goñi, A.R., and Rosa Palacín, M., High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte, Electrochem. Commun., 2013, vol. 27, p. 85.CrossRefGoogle Scholar
  48. 48.
    Ponrouch, A. and Palacín, M.R., On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study, Electrochem. Commun., 2015, vol. 54, p. 51.CrossRefGoogle Scholar
  49. 49.
    Bommier, C., Luo, W., Gao, W.-Y., Greaney, A., Ma, S., and Ji, X., Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements, Carbon, 2014, vol. 76, p. 165.CrossRefGoogle Scholar
  50. 50.
    Prabakar, S.J.R., Jeong, J., and Pyo, M., Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries, Electrochim. Acta, 2015, vol. 161, p. 23.CrossRefGoogle Scholar
  51. 51.
    Thomas, P. and Billaud, D., Electrochemical insertion of sodium into hard carbons, Electrochim. Acta, 2002, vol. 47, p. 3303.CrossRefGoogle Scholar
  52. 52.
    Kaspar, J., Storch, M., Schitco, C., Riedel, R., and Graczyk-Zajacz, M., SiOC(N)/Hard Carbon Composite Anodes for Na-Ion Batteries: Influence of Morphology on the Electrochemical Properties, J. Electrochem. Soc., 2016, vol. 163, p. A156.CrossRefGoogle Scholar
  53. 53.
    Bai, Y., Wang, Z., Wu, C., Xu, R., Wu, F., Liu, Y., Li, H., Li, Y., Lu, J., and Amine, K., Hard carbon originated from polyvinyl chloride nanofibers as highperformance anode material for Na-ion battery, ACS Appl. Materials and Interfaces, 2015, vol. 7, p. 5598.CrossRefGoogle Scholar
  54. 54.
    Xiao, L., Cao, Y., Henderson, W.A., Sushko, M.L., Shao, Y., Xiao, J., Wang, W., Engelhard, M.H., Nie, Z., and Liu, J., Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Naion batteries, Nano Energy, 2016, vol. 19, p. 279.CrossRefGoogle Scholar
  55. 55.
    Hasegawa, G., Kanamori, K., Kannari, N., Ozaki, J.-I., Nakanishi, K., and Abe, T., Hard Carbon Anodes for Na-Ion Batteries: Toward a Practical Use, ChemElectroChem., 2015, vol. 2, p. 1917.CrossRefGoogle Scholar
  56. 56.
    Zhao, J., Zhao, L., Chihara, K., Okada, S., Yamaki, J.-i., Matsumoto, S., Kuze, S., and Nakane, K., Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries, J. Power Sources, 2013, vol. 244, p. 752.CrossRefGoogle Scholar
  57. 57.
    Sun, N., Liu, H., and Xu, B., Facile synthesis of high performance hard carbon anode materials for sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 20560.CrossRefGoogle Scholar
  58. 58.
    Hong, K.-L., Qie, L., Zeng, R., Yi, Z.-Q., Zhang, W., Wang, D., Yin, W., Wu, C., Fan, Q.-J., Zhang, W.-X., and Huang, Y.-H., Biomass derived hard carbon used as a high performance anode material for sodium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 12733.CrossRefGoogle Scholar
  59. 59.
    Luo, W., Bommier, C., Jian, Z., Li, X., Carter, R., Vail, S., Lu, Y., Lee, J.-J., and Ji, X., Low-surfacearea hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent, ACS Appl. Materials and Interfaces, 2015, vol. 7, p. 2626.CrossRefGoogle Scholar
  60. 60.
    Lv, W., Wen, F., Xiang, J., Zhao, J., Li, L., Wang, L., Liu, Z., and Tian, Y., Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries, Electrochim. Acta, 2015, vol. 176, p. 533.CrossRefGoogle Scholar
  61. 61.
    Ding, J., Wang, H., Li, Z., Kohandehghan, A., Cui, K., Xu, Z., Zahiri, B., Tan, X., Lotfabad, E.M., Olsen, B.C., and Mitlin, D., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes, ACS Nano, 2013, vol. 7, p. 11004.CrossRefGoogle Scholar
  62. 62.
    Lotfabad, E.M., Ding, J., Cui, K., Kohandehghan, A., Kalisvaart, W.P., Hazelton, M., and Mitlin, D., High- Density Sodium and Lithium Ion Battery Anodes from Banana Peels, ACS Nano, 2014, vol. 8, p. 7115.CrossRefGoogle Scholar
  63. 63.
    Bommier, C., Surta, T.W., Dolgos, M., and Ji, X., New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon, Nano Letters, 2015, vol. 15, p. 5888.CrossRefGoogle Scholar
  64. 64.
    Li, Y., Xu, S., Wu, X., Yu, J., Wang, Y., Hu, Y.-S., Li, H., Chen, L., and Huang, X., Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 71.CrossRefGoogle Scholar
  65. 65.
    Wenzel, S., Hara, T., Janek, J., and Adelhelm, P., Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies, Energy and Environ. Sci., 2011, vol. 4, p. 3342.CrossRefGoogle Scholar
  66. 66.
    Irisarri, E., Ponrouch, A., and Palacin, M.R., Review—Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A2476.CrossRefGoogle Scholar
  67. 67.
    Alcántara, R., Jiménez-Mateos, J.M., and Tirado, J.L., Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C, J. Electrochem. Soc., 2002, vol. 149, p. A201.CrossRefGoogle Scholar
  68. 68.
    Alcántara, R., Jiménez-Mateos, J.M., Lavela, P., and Tirado, J.L., Carbon black: a promising electrode material for sodium-ion batteries, Electrochem. Commun., 2001, vol. 3, p. 639.CrossRefGoogle Scholar
  69. 69.
    Thomas, P., Ghanbaja, J., and Billaud, D., Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4—ethylene carbonate electrolyte, Electrochim. Acta, 1999, vol. 45, p. 423.CrossRefGoogle Scholar
  70. 70.
    Thomas, P. and Billaud, D., Sodium electrochemical insertion mechanisms in various carbon fibres, Electrochim. Acta, 2001, vol. 46, p. 3359.CrossRefGoogle Scholar
  71. 71.
    Zhang, B., Kang, F., Tarascon, J.-M., and Kim, J.-K., Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Progress in Mater. Sci., 2016, vol. 76, p. 319.CrossRefGoogle Scholar
  72. 72.
    Zhang, B., Ghimbeu, C.M., Laberty, C., Vix-Guterl, C., and Tarascon, J.-M., Correlation between Microstructure and Na Storage Behavior in Hard Carbon, Adv. Energy Mat., 2016, vol. 6, Article number 1501588.CrossRefGoogle Scholar
  73. 73.
    Chen, T., Liu, Y., Pan, L., Lu, T., Yao, Y., Sun, Zh., Chua, D.H.C., and Chen, Q., Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance, J. Mater. Chem. A, 2014, vol. 2, p. 4117.CrossRefGoogle Scholar
  74. 74.
    Jin, J., Yu, B.-J., Shi, Z.-Q., Wang, C.-Y., and Chong, C.-B., Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries, J. Power Sources, 2014, vol. 272, p. 800.CrossRefGoogle Scholar
  75. 75.
    Jin, J., Shi, Z.-Q., and Wang, C.-Y., Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries, Electrochim. Acta, 2014, vol. 141, p. 302.CrossRefGoogle Scholar
  76. 76.
    Li, W., Zeng, L., Yang, Z., Gu, L., Wang, J., Liu, X., Cheng, J., and Yu, Y., Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers, Nanoscale, 2014, vol. 6, p. 693.CrossRefGoogle Scholar
  77. 77.
    Luo, W., Schardt, J., Bommier, C., Wang, B., Razink, J., Simonsen, J., and Ji, X., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 10662.CrossRefGoogle Scholar
  78. 78.
    Wang, Z., Qie, L., Yuan, L., Zhang, W., Hu, X., and Huang, Y., Functionalized N-doped interconnected carbon nanofibers as an anode material for sodiumion storage with excellent performance, Carbon, 2013, vol. 55, p. 328.CrossRefGoogle Scholar
  79. 79.
    Fu, L., Tang, K., Song, K., Van Aken, P.A., Yu, Y., and Maier, J., Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance, Nanoscale, 2014, vol. 6, p. 1384.CrossRefGoogle Scholar
  80. 80.
    Wang, H.-G., Wu, Z., Meng, F.-L., Ma, D.-L., Huang, X.-L., Wang, L.-M., and Zhang, X.-B., Nitrogen-doped porous carbon nanosheets as lowcost, high-performance anode material for sodiumion batteries, ChemSusChem., 2013, vol. 6, p. 56.CrossRefGoogle Scholar
  81. 81.
    Zhang, K., Li, X., Liang, J., Zhu, Y., Hu, L., Cheng, Q., Guo, C., Lin, N., and Qian, Y., Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries, Electrochim. Acta, 2015, vol. 155, p. 174.CrossRefGoogle Scholar
  82. 82.
    Selvamani, V., Ravikumar, R., Suryanarayanan, V., Velayutham, D., and Gopukumar, S., Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell, Electrochim. Acta, vol. 190, p. 337.Google Scholar
  83. 83.
    Yang, F., Zhang, Zh., Du, K., Zhao, X., Chen, W., Lai, Y., and Li, J., Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries, Carbon, 2015, vol. 91, p. 88.CrossRefGoogle Scholar
  84. 84.
    Tang, K., Fu, L., White, R.J., Yu, L., Titirici, M.-M., Antonietti, M., and Maier, J., Hollow carbon nanospheres with superior rate capability for sodium-based batteries, Adv. Energy Mat., 2012, vol. 2, p. 873.CrossRefGoogle Scholar
  85. 85.
    Cao, Y., Xiao, L., Sushko, M. L., Wang, W., Schwenzer, B., Xiao, J., Nie, Z., Saraf, L. V., Yang, Z., and Liu, J., Sodium ion insertion in hollow carbon nanowires for battery applications, Nano Lett., 2012, vol. 12, p. 3783.CrossRefGoogle Scholar
  86. 86.
    Shao, Y., Xiao, J., Wang, W., Engelhard, M., Chen, X., Nie, Z., Gu, M., Saraf, L.V., Exarhos, G., Zhang, J.-G., and Liu, J., Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams, Nano Lett., 2013, vol. 13, p. 3909.CrossRefGoogle Scholar
  87. 87.
    Song, H., Li, N., Cui, H., and Wang, C., Enhanced storage capability and kinetic processes by pores-and hetero-atoms-riched carbon nanobubbles for Lithium- ion and Sodium-ion batteries anodes, Nano Energy, 2014, vol. 4, p. 81.CrossRefGoogle Scholar
  88. 88.
    Lyu, Z., Yang, L., Xu, D., Zhao, J., Lai, H., Jiang, Y., Wu, Q., Li, Y., Wang, X., and Hu, Z., Hierarchical carbon nanocages as high-rate anodes for Li- and Naion batteries, Nano Research, 2015, vol. 8, p. 3535.CrossRefGoogle Scholar
  89. 89.
    Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., and Wang, C., Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun., 2014, vol. 5, p. 4033.CrossRefGoogle Scholar
  90. 90.
    Pol, V.G., Lee, E., Zhou, D., Dogan, F., Calderon-Moreno, J.M., and Johnson, C.S., Spherical Carbon as a New High-Rate Anode for Sodium-ion Batteries, Electrochim. Acta, 2014, vol. 127, p. 61.CrossRefGoogle Scholar
  91. 91.
    Chen, T., Pan, L., Lu, T., Fu, C., Chua, D.H.C., and Sun, Z., Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 1263.CrossRefGoogle Scholar
  92. 92.
    Yin, L., Wang, Y., Han, C., Kang, Y-M., Ma, X., Xie, H., and Wu, M., Self-assembly of disordered hard carbon/ graphene hybrid for sodium-ion batteries, J. Power Sources, 2016, vol. 305, p. 156.CrossRefGoogle Scholar
  93. 93.
    Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., Charge?discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl) amide?potassium bis(fluorosulfonyl)amide, J. Power Sources, 2012, vol. 217, p. 479.CrossRefGoogle Scholar
  94. 94.
    Nam, D.-H., Hong, K.-S., Lim, S.-J., Kim, T.-H., and Kwon, H.-S., Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries, J. Phys. Chem. C, 2014, vol. 118, P. A20086.CrossRefGoogle Scholar
  95. 95.
    Ellis, L.D., Hatchard, T.D., and Obrovac, M.N., Reversible Insertion of Sodium in Tin, J. Electrochem. Soc., 2012, vol. 159, p. A1801.CrossRefGoogle Scholar
  96. 96.
    Baggetto, L., Ganesh, P., Meisner, R.P., Unocic, R.R., Jumas, J-C., Bridges, C.A., and Veith, G.M., Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory, J. Power Sources, 2013, vol. 234, p. 48.CrossRefGoogle Scholar
  97. 97.
    Komaba, S., Matsuura, Y., Ishikawa, T., Yabuuchi, N., Murata, W., and Kuze, S., Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell, Electrochem. Commun., 2012, vol. 21, p. 65.CrossRefGoogle Scholar
  98. 98.
    Datta, M.K., Epur, R., Saha, P., Kadakia, K., Park, S.K., Kumta, P.N., Tin and graphite based nanocomposites: Potential anode for sodium ion batteries, J. Power Sources, 2013, vol. 225, p. 316.CrossRefGoogle Scholar
  99. 99.
    Nam, D.-H., Kim, T.-H., Hong, K.-S., and Kwon, H.-S., Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries, ACS Nano, 2014, vol. 8, p. 11824.CrossRefGoogle Scholar
  100. 100.
    Xiao, L., Cao, Y., Xiao, J., Wang, W., Kovarik, L., Nie, Z., and Liu, J., High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications, Chem. Commun., 2012, vol. 48, p. 3321.CrossRefGoogle Scholar
  101. 101.
    Ji, L., Zhou, W., Chabot, V., Yu, A., and Xiao, X., Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries, ACS Appl. Mater. and Interfaces, 2015, vol. 7, p. 24895.CrossRefGoogle Scholar
  102. 102.
    Li, L., Seng, K.H., Li, D., Xia, Y., Liu, H.K., and Guo, Z., SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries, Nano Research, 2014, vol. 7, p. 1466.CrossRefGoogle Scholar
  103. 103.
    Ji, L., Gu, M., Shao, Y., Li, X., Engelhard, M.H., Arey, B.W., Wang, W., Nie, Z., Xiao, J., Wang, C., Zhang, J-G., and Liu, J., Controlling SEI Formation on SnSb-Porous Carbon Nanofibers for Improved Na Ion Storage, Adv. Mater., 2014, vol. 26, p. 2901.CrossRefGoogle Scholar
  104. 104.
    Darwiche, A., Sougrati, M.T., Fraisse, B., Stievano, L., and Monconduit, L., Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries, Electrochem. Commun., 2013, vol. 32, p. 18.CrossRefGoogle Scholar
  105. 105.
    Baggetto, L., Hah, H-Y., Jumas, J-C., Johnson, C.E., Johnson, J.A., Keum, J.K., Bridges, C.A., and Veith, G.M., The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies, J. Power Sources, 2014, vol. 267, p. 329.CrossRefGoogle Scholar
  106. 106.
    Xu, Y., Zhu, Y., Liu, Y., and Wang, C., Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries, Adv. Energy Mat., 2013, vol. 3, p. 128.CrossRefGoogle Scholar
  107. 107.
    Liu, Y., Zhang, N., Jiao, L., and Chen, J., Tin Nanodots Encapsulated in Porous Nitrogen-Doped Carbon Nanofibers as a Free-Standing Anode for Advanced Sodium-Ion Batteries, Adv. Mat., 2015, vol. 27, p. 6702.CrossRefGoogle Scholar
  108. 108.
    Baggetto, L., Jumas, J.-C., Górka, J., Bridges, C.A., and Veith, G.M., Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using ?-Cu6Sn5 thin films as a model system, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 10885.CrossRefGoogle Scholar
  109. 109.
    Thorne, J.S., Dunlap, R.A., and Obrovac, M.N., (Cu6Sn5)1-xCx active/inactive nanocomposite negative electrodes for Na-ion batteries, Electrochim. Acta, 2013, vol. 112, p. 133.CrossRefGoogle Scholar
  110. 110.
    Lin, Y-M., Abel, P.R., Gupta, A., Goodenough, J.B., Heller, A., and Mullins, C.B., Sn–Cu nanocomposite anodes for rechargeable sodium-ion batteries, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 8273.CrossRefGoogle Scholar
  111. 111.
    Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., Improved cyclability of Sn–Cu film electrode for sodium secondary battery using inorganic ionic liquid electrolyte, Electrochim. Acta, 2014, vol. 135, p. 60.CrossRefGoogle Scholar
  112. 112.
    Kim, I.T., Allcorn, E., and Manthiram, A., Cu6Sn5- TiC-C nanocomposite anodes for high-performance sodium-ion batteries, J. Power Sources, 2015, vol. 281, p. 11.CrossRefGoogle Scholar
  113. 113.
    González, J.R., Nacimiento, F., Alcántara, R., Ortiz, G.F., and Tirado, J.L., Electrodeposited CoSn2 on nickel open-cell foam: Advancing towards high power lithium ion and sodium ion batteries, CrystEngCommun., 2013, vol. 15, p. 9196.CrossRefGoogle Scholar
  114. 114.
    Abel, P.R., Fields, M.G., Heller, A., and Mullins, C.B., Tin-germanium alloys as anode materials for sodiumion batteries, ACS Applied Materials and Interfaces, 2014, vol. 6, p. 15860.CrossRefGoogle Scholar
  115. 115.
    Farbod, B., Cui, K., Kalisvaart, W.P., Kupsta, M., Zahiri, B., Kohandehghan, A., Lotfabad, E.M., Li, Z., Luber, E.J., and Mitlin, D., Anodes for sodium ion batteries based on tin-germanium-antimony alloys, ACS Nano, 2014, vol. 8, p. 4415.CrossRefGoogle Scholar
  116. 116.
    Ellis, L., Ferguson, P.P., and Obrovac, M.N., Sodium Insertion into Tin Cobalt Carbon Active/Inactive Nanocomposite, J. Electrochem. Soc., 2013, vol. 160, p. A869.CrossRefGoogle Scholar
  117. 117.
    Darwiche, A., Marino, C., Sougrati, M.T., Fraisse, B., Stievano, L., and Monconduit, L., Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism, J. Amer. Chem. Soc., 2012, vol. 134, p. 20805.CrossRefGoogle Scholar
  118. 118.
    Liang, L., Xu, Y., Wang, C., Wen, L., Fang, Y., Mi, Y., Zhou, M., Zhao, H., and Lei, Y., Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries, Energy and Environ. Sci, 2015, vol. 8, p. 2954.CrossRefGoogle Scholar
  119. 119.
    Saubanère, M., Yahia, M.B., Lemoigno, F., and Doublet, M.-L., Influence of polymorphism on the electrochemical behavior of MxSb negative electrodes in Li/Na batteries, J. Power Sources, 2015, vol. 280, p. 695.CrossRefGoogle Scholar
  120. 120.
    Bodenes, L., Darwiche, A., Monconduit, L., and Martinez, H., The Solid Electrolyte Interphase a key parameter of the high performance of Sb in sodiumion batteries: Comparative X-ray Photoelectron Spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries, J. Power Sources, 2015, vol. 273, p. 14.CrossRefGoogle Scholar
  121. 121.
    He, M., Kravchyk, K., Walter, M., and Kovalenko, M.V. Monodisperse antimony nanocrystals for high-rate liion and na-ion battery anodes: Nano versus bulk, Nano Lett., 2014, vol. 14, p. 1255.CrossRefGoogle Scholar
  122. 122.
    Baggetto, L., Ganesh, P., Sun, C-N., Meisner, R.A., Zawodzinski, T.A., and Veith, G.M., Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory, J. Mater. Chem. A, 2013, vol. 1, p. 7985.CrossRefGoogle Scholar
  123. 123.
    Qian, J., Chen, Y., Wu, L., Cao, Y., Ai, X., and Yang, H., High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries, Chem. Commun., 2012, vol. 48, p. 7070.CrossRefGoogle Scholar
  124. 124.
    Zhu, Y., Han, X., Xu, Y., Liu, Y., Zheng, S., Xu, K., Hu, L., and Wang, C., Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode, ACS Nano, vol. 7, p. 6378.Google Scholar
  125. 125.
    Wu, L., Hu, X., Qian, J., Pei, F., Wu, F., Mao, R., Ai, X., Yang, H., and Cao, Y., Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy and Environmental Science, 2014, vol. 7, p. 323.CrossRefGoogle Scholar
  126. 126.
    Hou, H., Jing, M., Yang, Y., Zhang, Y., Song, W., Yang, X., Chen, J., Chen, Q., and Ji, X., Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries, J. Power Sources, 2015, vol. 284, p. 227.CrossRefGoogle Scholar
  127. 127.
    Hou, H., Yang, Y., Zhu, Y., Jing, M., Pan, C., Fang, L., Song, W., Yang, X., and Ji, X., An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries, Electrochim. Acta, 2014, vol. 146, p. 328.CrossRefGoogle Scholar
  128. 128.
    Ko, Y.N. and Kang, Y.C., Electrochemical properties of ultrafine Sb nanocrystals embedded in carbon microspheres for use as Na-ion battery anode materials, Chem. Commun., 2014, vol. 50, p. 12322.CrossRefGoogle Scholar
  129. 129.
    Wang, M., Yang, Z., Wang, J., Li, W., Gu, L., and Yu, Y., Sb Nanoparticles Encapsulated in a Reticular Amorphous Carbon Network for Enhanced Sodium Storage, Small, 2015, vol. 11, p. 5381.CrossRefGoogle Scholar
  130. 130.
    Wu, L., Lu, H., Xiao, L., Ai, X., Yang, H., and Cao, Y., Electrochemical properties and morphological evolution of pitaya-like Sb@C microspheres as high-performance anode for sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 5708.CrossRefGoogle Scholar
  131. 131.
    Zhang, Y., Xie, J., Zhu, T., Cao, G., Zhao, X., and Zhang, S., Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route, J. Power Sources, 2014, vol. 247, p. 204.CrossRefGoogle Scholar
  132. 132.
    Nithya, C. and Gopukumar, S., RGO/nano Sb composite: A high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGO sheet during galvanostatic cycling, J. Mater. Chem. A, 2014, vol. 2, p. 10516.CrossRefGoogle Scholar
  133. 133.
    Zhou, X., Zhong, Y., Yang, M., Hu, M., Wei, J., and Zhou, Z., Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability, Chem. Commun., 2014, vol. 50, p. 12888.CrossRefGoogle Scholar
  134. 134.
    Zhou, X., Dai, Z., Bao, J., and Guo, Y-G., Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage, J. Mater. Chem. A, 2013, vol. 1, p. 13727.CrossRefGoogle Scholar
  135. 135.
    Fan, L., Zhang, J., Cui, J., Zhu, Y., Liang, J., Wang, L., and Qian, Y., Electrochemical performance of rodlike Sb–C composite as anodes for Li-ion and Na-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 3276.CrossRefGoogle Scholar
  136. 136.
    Luo, W., Zhang, P., Wang, X., Li, Q., Dong, Y., and Hua, J., Antimony nanoparticles anchored in threedimensional carbon network as promising sodium-ion battery anode, J. Power Sources, 2016, vol. 304, p. 340.CrossRefGoogle Scholar
  137. 137.
    Baggetto, L., Marszewski, M., Górka, J., Jaroniec, M., and Veith, G.M., AlSb thin films as negative electrodes for Li-ion and Na-ion batteries, J. Power Sources, vol. 243, p. 699.Google Scholar
  138. 138.
    Baggetto, L., Allcorn, E., Unocic, R.R., Manthiram, A., and Veith, G.M., Mo3Sb7 as a very fast anode material for lithium-ion and sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 11163.CrossRefGoogle Scholar
  139. 139.
    Baggetto, L., Carroll, K.J., Hah, H-Y., Johnson, C.E., Mullins, D.R., Unocic, R.R., Johnson, J.A., Meng, Y.S., and Veith, G.M., Probing the mechanism of sodium ion insertion into copper antimony Cu2Sb anodes, J. Phys. Chem. C, 2014, vol. 118, p. 7856.CrossRefGoogle Scholar
  140. 140.
    Baggetto, L., Hah, H-Y., Johnson, C.E., Bridges, C.A., Johnson, J.A., and Veith, G.M., The reaction mechanism of FeSb2 as anode for sodium-ion batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 9538.CrossRefGoogle Scholar
  141. 141.
    Liu, J., Yang, Z., Wang, J., Gu, L., Maier, J., and Yu, Y., Three-dimensionally interconnected nickel-antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries, Nano Energy, 2015, vol. 16, p. 389.CrossRefGoogle Scholar
  142. 142.
    Wu, L., Pei, F., Mao, R., Wu, F., Wu, Y., Qian, J., Cao, Y., Ai, X., and Yang, H., SiC–Sb–C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries, Electrochim. Acta, 2013, vol. 87, p. 41.CrossRefGoogle Scholar
  143. 143.
    Kim, I.T., Allcorn, E., and Manthiram, A., High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 12884.CrossRefGoogle Scholar
  144. 144.
    Kim, I.T., Kim, S-O., and Manthiram, A., Effect of TiC addition on SnSbeC composite anodes for sodium-ion batteries, J. Power Sources, 2014, vol. 269, p. 848.CrossRefGoogle Scholar
  145. 145.
    Baggetto, L., Allcorn, E., Manthiram, A., and Veith, G.M., Cu2Sb thin films as anode for Na-ion batteries, Electrochem. Commun., 2013, vol. 27, p. 168.CrossRefGoogle Scholar
  146. 146.
    Nam, D-H., Hong, K-S., Lim, S-J., and Kwon, H-S., Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries, J. Power Sources, 2014, vol. 247, p. 423.CrossRefGoogle Scholar
  147. 147.
    Ellis, L.D., Wilkes, B.N., Hatchard, T.D., and Obrovac, M.N., In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells, J. Electrochem. Soc., 2014, vol. 161, p. A416.CrossRefGoogle Scholar
  148. 148.
    Legrain, F. and Manzhos, S., Aluminum doping improves the energetics of lithium, sodium, and magnesium storage in silicon: A first-principles study, J. Power Sources, 2015, vol. 274, p. 65.CrossRefGoogle Scholar
  149. 149.
    Legrain, F., Malyi, O.I., and Manzhos, S., Comparative computational study of the energetics of Li, Na, and Mg storage in amorphous and crystalline silicon, Comp. Mater. Sci., 2014, vol. 94, p. 214.CrossRefGoogle Scholar
  150. 150.
    Xu, Y., Swaans, E., Basak, S., Zandbergen, H.W., Borsa, D.M., and Mulder, F.M., Reversible na-ion uptake in Si nanoparticles, Adv. Energy Mater., 2016, vol. 6, Article number 1501436.CrossRefGoogle Scholar
  151. 151.
    Baggetto, L., Keum, J.K., Browning, J.F., and Veith, G.M., Germanium as negative electrode material for sodium-ion batteries, Electrochem. Commun., 2013, vol. 34, p. 41.CrossRefGoogle Scholar
  152. 152.
    Abel, P.R., Lin, Y.-M., De Souza, T., Chou, C.-Y., Gupta, A., Goodenough, J.B., Hwang, C.S., Heller, A., and Mullins, C.B., Nanocolumnar germanium thin films as a high-rate sodium-ion battery anode material, J. Phys. Chem. C., 2013, vol. 117, p. 18885.CrossRefGoogle Scholar
  153. 153.
    Webb, S.A., Baggetto, L., Bridges, C.A., and Veith, G.M., The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance, J. Power Sources, 2014, vol. 248, p. 1105.CrossRefGoogle Scholar
  154. 154.
    Darwiche, A., Dugas, R., Fraisse, B., and Monconduit, L., Reinstating lead for high-loaded efficient negative electrode for rechargeable sodium-ion battery, J. Power Sources, 2016, vol. 304, p. 1.CrossRefGoogle Scholar
  155. 155.
    Su, D., Wang, C., Ahn, H., and Wang, G., Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 12543.CrossRefGoogle Scholar
  156. 156.
    Bian, H., Zhang, J., Yuen, M-F., Kang, W., Zhan, Y., Yu, D.Y.W., Xu, Z., and Li, Y.Y., Anodic nanoporous SnO2 grown on Cu foils as superior binder-free Na-ion battery anodes, J. Power Sources, 2016, vol. 307, p. 634.CrossRefGoogle Scholar
  157. 157.
    Su, D., Xie, X., and Wang, G., Hierarchical Mesoporous SnO Microspheres as High Capacity Anode Materials for Sodium-Ion Batteries, Chem. Eur. J., 2014, vol. 20, p. 3192.CrossRefGoogle Scholar
  158. 158.
    Shimizu, M., Usui, H., and Sakaguchi, H., Electrochemical Na-insertion/extraction properties of SnO thick-film electrodes prepared by gas-deposition, J. Power Sources, 2014, vol. 248, p. 378.CrossRefGoogle Scholar
  159. 159.
    Lu, Y.C., Ma, C., Alvarado, J., Kidera, T., Dimov, N., Meng, Y.S., and Okada, S., Electrochemical properties of tin oxide anodes for sodium-ion batteries, J. Power Sources, 2015, vol. 284, p. 287.CrossRefGoogle Scholar
  160. 160.
    Górka, J., Baggetto, L., Keum, J.K., Mahurin, S.M., Mayes, R.T., Dai, S., and Veith, G.M., The electrochemical reactions of SnO2 with Li and Na: A study using thin films and mesoporous carbons, J. Power Sources, 2015, vol. 284, p. 1.CrossRefGoogle Scholar
  161. 161.
    Liu, Y., Fang, X., Ge, M., Rong, J., Shen, C., Zhang, A., Enaya, H.A., and Zhou, C., SnO2 coated carbon cloth with surface modification as Na-ion battery anode, Nano Energy, 2015, vol. 16, p. 399.CrossRefGoogle Scholar
  162. 162.
    Cheng, Y., Huang, J., Li, J., Xu, Z., Cao, L., Ouyang, H., Yan, J., and Qi, H., SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance, J. Alloys and Compounds, 2016, vol. 658, p. 234.CrossRefGoogle Scholar
  163. 163.
    Wang, Y., Su, D., Wang, C., and Wang, G., SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries, Electrochem. Commun., 2013, vol. 29, p. 8.CrossRefGoogle Scholar
  164. 164.
    Wang, Y.-X., Lim, Y.-C., Park, M.-S., Chou, S.-L., Kim, J.H., Liu, H.-K., Dou, S.-X., and Kim, Y.-J., Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances, J. Mater. Chem. A, 2014, vol. 2, p. 529.CrossRefGoogle Scholar
  165. 165.
    Su, D., Ahn, H-J., and Wang, G., SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance, Chem. Commun., 2013, vol. 49, p. 3131.CrossRefGoogle Scholar
  166. 166.
    Zhang, Y., Xie, J., Zhang, S., Zhu, P., Cao, G., and Zhao, X., Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries, Electrochim. Acta, 2015, vol. 151, P. A8.CrossRefGoogle Scholar
  167. 167.
    Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaka, T., Tin-based amorphous oxide: A highcapacity lithium-ion-storage material, Science, 1997, vol. 276, p. 1395.CrossRefGoogle Scholar
  168. 168.
    Courtney, I.A. and Dahn, J.R., Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites, J. Electrochem. Soc., 1997, vol. 144, p. 2045.CrossRefGoogle Scholar
  169. 169.
    Courtney, I.A. and Dahn, J.R., Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO2 and Sn2BPO6 Glass, J. Electrochem. Soc., 1997, vol. 144, p. 2943.CrossRefGoogle Scholar
  170. 170.
    Wu, X., Wu, W., Zhou, Y., Huang, X., Chen, W., and Wang, Q., Synthesis and electrochemical performance of SnO2–Fe2O3 composite as an anode material for Na-ion and Li-ion batteries, Powder Technology, 2015, vol. 280, p. 119.CrossRefGoogle Scholar
  171. 171.
    Xu, Y., Lotfabad, E.M., Wang, H., Farbod, B., Xu, Z., Kohandehghan, A., and Mitlin, D., Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries, Chem. Commun., 2013, vol. 49, p. 8973.CrossRefGoogle Scholar
  172. 172.
    Wu, L., Buchholz, D., Bresser, D., Chagas, L.G., and Passerini, S., Anatase TiO2 nanoparticles for high power sodium-ion anodes, J. Power Sources, 2014, vol. 251, p. 379.CrossRefGoogle Scholar
  173. 173.
    Yan, Z., Liu, L., Tan, J., Zhou, Q., Huang, Z., Xia, D., Shu, H., Yang, X., and Wang, X., One-pot synthesis of bicrystalline titanium dioxide spheres with a core–shell structure as anode materials for lithium and sodium ion batteries, J. Power Sources, 2014, vol. 269, p. 37.CrossRefGoogle Scholar
  174. 174.
    Wu, L., Bresser, D., Buchholz, D., and Passerini, S., Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A3052.CrossRefGoogle Scholar
  175. 175.
    Prutsch, D., Wilkening, M., and Hanzu, I., Long- Cycle-Life Na-Ion Anodes Based on Amorphous Titania Nanotubes-Interfaces and Diffusion, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 25757.CrossRefGoogle Scholar
  176. 176.
    Xiong, H., Slater, M.D., Balasubramanian, M., Johnson, C.S., and Rajh, T., Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries, J. Phys. Chem. Lett., 2011, vol. 2, p. 2560.CrossRefGoogle Scholar
  177. 177.
    Huang, J.P., Yuan, D.D., Zhang, H.Z., Cao, Y.L., Li, G.R., Yang, H.X., and Gao, X.P., Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries, RSC Adv., 2013, vol. 3, p. 12593.CrossRefGoogle Scholar
  178. 178.
    Bi, Z., Paranthaman, M.P., Menchhofer, P.A., Dehoff, R.R., Bridges, C.A., Chi, M., Guo, B., Sun, X-G., and Sheng, Dai, Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries, J. Power Sources, 2013, vol. 222, p. 461.CrossRefGoogle Scholar
  179. 179.
    Su, D., Dou, S., and Wang, G., Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 6022.CrossRefGoogle Scholar
  180. 180.
    Kim, K-T., Ali, G., Chung, K.Y., Yoon, C.S., Yashiro, H., Sun, Y-K., Lu, J., Amine, K., and Myung, S-T., Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries, Nano Letters, 2014, vol. 14, p. 416.CrossRefGoogle Scholar
  181. 181.
    Liao, J-Y., Luna, B.D., and Manthiram, A., TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage, J. Mater. Chem. A, 2016, vol. 4, p. 801.CrossRefGoogle Scholar
  182. 182.
    Usui, H., Yoshioka, S., Wasada, K., Shimizu, M., and Sakaguchi, H., Nb-Doped Rutile TiO2: a Potential Anode Material for Na-Ion Battery, ACS Applied Materials & Interfaces, 2015, vol. 7, p. 6567.CrossRefGoogle Scholar
  183. 183.
    Pérez-Flores, J.C., Baehtz, C., Kuhn, A., and García-Alvarado, F., Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 1825.CrossRefGoogle Scholar
  184. 184.
    Hwang, J.-Y., Myung, S.-T., Lee, J.-H., Abouimrane, A., Belharouak, I., and Sun, Y.-K., Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes, Nano Energy, 2015, vol. 16, p. 218.CrossRefGoogle Scholar
  185. 185.
    Lee, J., Chen, Y-M., Zhu, Z., and Vogt, B.D., Fabrication of Porous Carbon/TiO2 Composites through Polymerization-Induced Phase Separation and Use As an Anode for Na-Ion Batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 21011.CrossRefGoogle Scholar
  186. 186.
    Oh, S-M., Hwang, J-Y., Yoon, C.S., Lu, J., Amine, K., Belharouak, I., and Sun, Y-K., High Electrochemical Performances of Microsphere C-TiO2 Anode for Sodium-Ion Battery, ACS Applied Materials & Interfaces, 2014, vol. 6, p. 11295.CrossRefGoogle Scholar
  187. 187.
    Jung, K.-N., Seong, J-Y., Kim, S.-S., Lee, G-J., and Lee, J.-W., One-dimensional nanofiber architecture of an anatase TiO2–carbon composite with improved sodium storage performance, RSC Adv., 2015, vol. 5, p. 106252.CrossRefGoogle Scholar
  188. 188.
    Feng, J.-M., Dong, L., Han, Y., Li, X.-F., and Li, D.-J., Facile synthesis of graphene-titanium dioxide nanocomposites as anode materials for Na-ion batteries, Int. J. Hydrogen Energy, 2016, vol. 41, p. 355.CrossRefGoogle Scholar
  189. 189.
    Doeff, M.M., Cabana, J., and Shirpour, M., Titanate Anodes for Sodium Ion Batteries, J. Inorg. Organometal. Polymers and Materials, 2014, vol. 24, p. 5.CrossRefGoogle Scholar
  190. 190.
    Senguttuvan, P., Rousse, G., Seznec, V., Tarascon, J.-M., and Palacín, M.R., Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries, Chem. Mater., 2011, vol. 23, p. 4109.CrossRefGoogle Scholar
  191. 191.
    Zhao, L., Qi, L., and Wang, H., Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic electrolytes, J. Power Sources, 2013, vol. 242, p. 597.CrossRefGoogle Scholar
  192. 192.
    Rudola, A., Saravanan, K., Masona, C.W., and Balaya, P., Na2Ti3O7: an intercalation based anode for sodium-ion battery applications, J. Mater. Chem. A, 2013, vol. 1, p. 2653.CrossRefGoogle Scholar
  193. 193.
    Pan, H., Lu, X., Yu, X., Hu, Y.-S., Li, H., Yang, X.-Q., and Chen, L., Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodiumion batteries, Adv. Energy Mater., 2013, vol. 3, p. 1186.CrossRefGoogle Scholar
  194. 194.
    Wang, W., Yu, C., Liu, Y., Hou, J., Zhu, H., and Jiao, S., Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteries, RSC Adv., 2013, vol. 3, p. 1041.CrossRefGoogle Scholar
  195. 195.
    Zou, W., Li, J., Deng, Q., Xue, J., Dai, X., Zhou, A., and Li, J., Microspherical Na2Ti3O7 prepared by spray-drying method as anode material for sodiumion battery, Solid State Ionics, 2014, vol. 262, p. 192.CrossRefGoogle Scholar
  196. 196.
    Xu, J., Ma, C., Balasubramanian, M., and Meng, Y.S., Understanding Na2Ti3O7 as an ultra-low voltage anode material for a Na-ion battery, Chem. Commun., 2014, vol. 50, p. 12564.CrossRefGoogle Scholar
  197. 197.
    Zhang, Y., Guo, L., and Yang, S., Three-dimensional spider-web architecture assembled from Na2Ti3O7 nanotubes as a high performance anode for a sodiumion battery, Chem. Commun., 2014, vol. 50, p. 14029.CrossRefGoogle Scholar
  198. 198.
    Rudola, A., Sharma, N., and Balaya, P., Introducing a 0.2 V sodium-ion battery anode: The Na2Ti3O7 to Na3 - xTi3O7 pathway, Electrochem. Commun., 2015, vol. 61, p. 10.CrossRefGoogle Scholar
  199. 199.
    Xie, M., Wang, K., Chen, R., Li, Li, and Wu, F., A facile route to synthesize sheet-like Na2Ti3O7 with improved sodium storage properties, Chem. Res. in Chinese Universities, 2015, vol. 31, p. 443.CrossRefGoogle Scholar
  200. 200.
    Wang, X., Li, Y., Gao, Y., Wang, Z., and Chen, L., Additive-free sodium titanate nanotube array as advanced electrode for sodium ion batteries, Nano Energy, 2015, vol. 13, p. 687.CrossRefGoogle Scholar
  201. 201.
    Nava-Avendaño, J., Morales-García, A., Ponrouch, A., Rousse, G., Frontera, C., Senguttuvan, P., Tarascon, J.-M., Arroyo-de Dompablo, M.E., and Palacín, M.R., Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7, J. Mater. Chem. A, 2015, vol. 3, p. 22280.CrossRefGoogle Scholar
  202. 202.
    Yan, Z., Liu, L., Shu, H., Yang, X., Wang, H., Tan, J., Zhou, Q., Huang, Z., and Wang, X., A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries, J. Power Sources, 2015, vol. 274, p. 8.CrossRefGoogle Scholar
  203. 203.
    Zarrabeitia, M., Castillo-Martíneza, E., Del Amo, J.M.L., Eguía-Barrio, A., Muñoz-Márquez, M.Á., Rojo, T., and Casas-Cabanas, M., Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7, Acta Materialia, 2016, vol. 104, p. 125.CrossRefGoogle Scholar
  204. 204.
    Mukherjee, S., Bates, A., Schuppert, N., Son, B., Kim, J.G., Choi, J.S., Choi, M.J., Lee, D-H., Kwon, O., Jasinski, J., and Park, S., A study of a novel Na ion battery and its anodic degradation using sodium rich prussian blue cathode coupled with different titanium based oxide anodes, J. Power Sources, 2015, vol. 286, p. 276.CrossRefGoogle Scholar
  205. 205.
    Muñoz-Márquez, M.A., Zarrabeitia, M., Castillo-Martínez, E., Eguía-Barrio, A., Rojo, T., and Casas-Cabanas, M., Composition and Evolution of the Solid-Electrolyte Interphase in Na2Ti3O7 Electrodes for Na-Ion Batteries: XPS and Auger Parameter Analysis, ACS Applied Materials & Interfaces, 2015, vol. 7, p. 7801.CrossRefGoogle Scholar
  206. 206.
    Wang, S., Wang, W., Zhan, P., Yuan, Y., Jiao, K., Jiao, H., and Jiao, S., 3D flower-like NaHTi3O7 nanotubes as high-performance anodes for sodiumion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 16528.CrossRefGoogle Scholar
  207. 207.
    Yang, C-J., Chao, L-S., and Lu, F-H., Synthesis and electrochemical behaviors of nano-network NaHTi3O7 thin films on Ti/Si prepared by a hydrothermal- galvanic couple method, Surf. Coatings Technol., 2013, vol. 231, p. 521.CrossRefGoogle Scholar
  208. 208.
    Wu, D., Li, X., Xu, B., Twu, N., Liu, L., and Ceder, G., NaTiO2: a layered anode material for sodium-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 195.CrossRefGoogle Scholar
  209. 209.
    Kataoka, K. and Akimoto, J., Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure, J. Power Sources, 2016, vol. 305, p. 151.CrossRefGoogle Scholar
  210. 210.
    Zhang, Y., Hou, H., Yang, X., Chen, J., Jing, M., Wu, Z., Jia, X., and Ji, X., Sodium titanate cuboid as advanced anode material for sodium ion batteries, J. Power Sources, 2016, vol. 305, p. 200.CrossRefGoogle Scholar
  211. 211.
    Cabello, M., Ortiz, G.F., López, M.C., Alcántara, R., González, J.R., Tirado, J.L., Stoyanova, R., and Zhecheva, E., Self-organized sodium titanate/titania nanoforest for the negative electrode of sodium-ion microbatteries, J. Alloys and Compounds, 2015, vol. 646, p. 816.CrossRefGoogle Scholar
  212. 212.
    Liu, C., Liang, J-Y., Han, R-R., Wang, Y-Z., Zhao, J., Huang, Q-J., Chen, J., and Hou, W-H., S-doped Na2Ti6O13@TiO2 core–shell nanorods with enhanced visible light photocatalytic performance, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 15165.CrossRefGoogle Scholar
  213. 213.
    Shen, K. and Wagemaker, M., Na2+xTi6O13 as Potential Negative Electrode Material for Na-Ion Batteries, Inorganic Chemistry, 2014, vol. 53, p. 8250.CrossRefGoogle Scholar
  214. 214.
    Liao, J.-Y. and Manthiram, A., High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage, Nano Energy, 2015, vol. 18, p. 20.CrossRefGoogle Scholar
  215. 215.
    Naeyaer, P.J.P., Avdeev, M., Sharma, N., Yahia, H.B., and Ling, C.D., Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium-Ion Battery Anode Material, Chem. Mater., 2014, vol. 26, p. 7067.CrossRefGoogle Scholar
  216. 216.
    Hou, J., Song, J., Niu, Y., Cheng, C., He, H., Li, Y., and Xu, M., Carbon-coated P2-type Na0.67Ni0.33Ti0.67O2 as an anode material for sodium ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 1827.CrossRefGoogle Scholar
  217. 217.
    Wang, Y., Yu, X., Xu, S., Bai, J., Xiao, R., Hu, Y.-S., Li, H.a, Yang, X.-Q., Chen, L., and Huang, X., A zerostrain layered metal oxide as the negative electrode for long-life sodium-ion batteries, Nature Commun., 2013, vol. 4, article no. 2365.CrossRefGoogle Scholar
  218. 218.
    Wang, J., Qiu, B., He, X., Risthaus, T., Liu, H., Stan, M.C., Schulze, S., Xia, Y., Liu, Z., Winter, M., and Li, J., Low-Cost Orthorhombic Nax[FeTi]O4 (x = 1 and 4/3) Compounds as Anode Materials for Sodium-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 4374.CrossRefGoogle Scholar
  219. 219.
    Shirpour, M., Cabana, J., and Doeff, M., Lepidocrocite- type Layered Titanate Structures: New Lithium and Sodium Ion Intercalation Anode Materials, Chem. Mater., 2014, vol. 26, p. 2502.CrossRefGoogle Scholar
  220. 220.
    Hou, J., Niu, Y., Li, W., Yi, F., Liu, S., Li, Y., and Xu, M., Na0.56Ti1.72Fe0.28O4: a novel anode material for Na-ion batteries, RSC Advances, 2015, vol. 5, p. 88556.CrossRefGoogle Scholar
  221. 221.
    Shirpour, M., Cabana, J., and Doeff, M., New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems, Energy Environ. Sci., 2013, vol. 6, p. 2538.CrossRefGoogle Scholar
  222. 222.
    Yin, J., Qi, L., and Wang, H., Sodium Titanate Nanotubes as Negative Electrode Materials for Sodium-Ion Capacitors, ACS Applied Materials & Interfaces, 2012, vol. 4, p. 2762.CrossRefGoogle Scholar
  223. 223.
    Liu, J., Banis, N.M., Xiao, B., Sun, Q., Lushington, A., Li, R., Guo, J., Sham, T-K., and Sun, X., Atomically precise growth of sodium titanates as anode materials for high-rate and ultralong cycle-life sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 24281.CrossRefGoogle Scholar
  224. 224.
    Zhao, L., Pan, H-L., Hu, Y-S., Li, H., and Chen, L-Q., Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery, Chinese Physics B, 2012, vol. 21, Number 2, Article No. 028201.CrossRefGoogle Scholar
  225. 225.
    Sun, Y., Zhao, L., Pan, H., Lu, X., Gu, L., Hu, Y-S., Li, H., Armand, M., Ikuhara, Y., Chen, L., and Huang, X., Direct atomic-scale confirmation of threephase storage mechanism in Li4Ti5O12 anodes for roomtemperature sodium-ion batteries, Nature Commun., 2013, vol. 4, p. 1870.CrossRefGoogle Scholar
  226. 226.
    Kitta, M., Kuratani, K., Tabuchi, M., Takeichi, N., Akita, T., Kiyobayashi, T., and Kohyama, M., Irreversible structural change of a spinel Li4Ti5O12 particle via Na insertion-extraction cycles of a sodium-ion battery, Electrochim. Acta, 2014, vol. 148, p. 175.CrossRefGoogle Scholar
  227. 227.
    Yu, X., Pan, H., Wan, W., Ma, C., Bai, J., Meng, Q., Ehrlich, S.N., Hu, Y-S., and Yang, X-Q., A Size- Dependent Sodium Storage Mechanism in Li4Ti5O12 Investigated by a Novel Characterization Technique Combining in Situ X-ray Diffraction and Chemical Sodiation, Nano Lett., 2013, vol. 13, p. 4721.CrossRefGoogle Scholar
  228. 228.
    Yu, P., Li, C., and Guo, X., Sodium Storage and Pseudocapacitive Charge in Textured Li4Ti5O12 Thin Films, J. Phys. Chem. C, 2014, vol. 118, p. 10616.CrossRefGoogle Scholar
  229. 229.
    Hasegawa, G., Kanamori, K., Kiyomura, T., Kurata, H., Nakanishi, K., and Abe, T., Hierarchically porous Li4Ti5O12 anode materials for Li- and Na-ion batteries: Effects of nanoarchitectural design and temperature dependence of the rate capability, Adv. Energy Mater., 2015, vol. 5, Article No. 1400730.CrossRefGoogle Scholar
  230. 230.
    Kim, K.-T., Yu, C.-Y., Yoon, C.S., Kim, S.-J., Sun, Y.-K., and Myung, S-T., Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries, Nano Energy, 2015, vol. 12, p. 725.CrossRefGoogle Scholar
  231. 231.
    Zhou, Q., Liu, L., Tan, J., Yan, Z., Huang, Z., and Wang, X., Synthesis of lithium titanate nanorods as anode materials for lithium and sodium ion batteries with superior electrochemical performance, J. Power Sources, 2015, vol. 283, p. 243.CrossRefGoogle Scholar
  232. 232.
    Liu, J., Tang, K., Song, K., van Aken, P.A., Yu, Y., and Maiera, J., Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 20813.CrossRefGoogle Scholar
  233. 233.
    Ge, Y., Jiang, H., Fu, K., Zhang, C., Zhu, J., Chen, C., Lu, Y. Qiu, Y., and Zhang, X., Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries, J. Power Sources, 2014, vol. 272, p. 860.CrossRefGoogle Scholar
  234. 234.
    Hariharan, S., Saravanan, K., Ramar, V., and Balaya, P., A rationally designed dual role anode material for lithium- ion and sodium-ion batteries: case study of ecofriendly Fe3O4, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 2945.CrossRefGoogle Scholar
  235. 235.
    Kumar, P.R., Jung, Y.H., Bharathi, K.K., Lim, C.H., and Kim, D.K., High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials, Electrochim. Acta, 2014, vol. 146, p. 503.CrossRefGoogle Scholar
  236. 236.
    Valvo, M., Lindgren, F., Lafont, U., Björefors, F., and Edström, K., Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide, J. Power Sources, 2014, vol. 245, p. 967.CrossRefGoogle Scholar
  237. 237.
    Jian, Z., Zhao, B., Liu, P., Li, F., Zheng, M., Chen, M., Shi, Y., and Zhou, H., Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries, Chem. Commun., 2014, vol. 50, p. 1215.CrossRefGoogle Scholar
  238. 238.
    Zhang, Z.-J., Wang, Y.-X., Chou, S.-L., Li, H.-J., Liu, H.-K., and Wang, J.-Z., Rapid synthesis of a-Fe2O3/rGO nanocomposites by microwave autoclave as superior anodes for sodium-ion batteries, J. Power Sources, 2015, vol. 280, p. 107.CrossRefGoogle Scholar
  239. 239.
    Yu, L., Wang, L.P., Xi, S., Yang, P., Du, Y., Srinivasan, M., and Xu, Z.J., ß-FeOOH: An Earth-Abundant High-Capacity Negative Electrode Material for Sodium-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 5340.CrossRefGoogle Scholar
  240. 240.
    López, M.C., Lavela, P., Ortiz, G.F., and Tirado, J.L., Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries, Electrochem. Commun., 2013, vol. 27, p. 152.CrossRefGoogle Scholar
  241. 241.
    Zhao, Y., Feng, Z., and Xu, Z.J., Yolk–shell Fe2O3@C composites anchored on MWNTs with enhanced lithium and sodium storage, Nanoscale, 2015, vol. 7, p. 9520.CrossRefGoogle Scholar
  242. 242.
    Wen, J-W., Zhang, D-W., Zang, Y., Sun, X., Cheng, B., Ding, C-X., Yu, Y., and Chen, C-H., Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries, Electrochim. Acta, 2014, vol. 132, p. 193.CrossRefGoogle Scholar
  243. 243.
    Jian, Z., Liu, P., Li, F., Chen, M., and Zhou, H., Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 13805.CrossRefGoogle Scholar
  244. 244.
    Rahman, M.M., Glushenkov, A.M., Ramireddy, T., and Chen, Y., Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries, Chem. Commun., 2014, vol. 50, p. 5057.CrossRefGoogle Scholar
  245. 245.
    Liu, Y., Cheng, Z., Sun, H., Arandiyan, H., Li, J., and Ahmad, M., Mesoporous Co3O4 sheets/3D graphene networks nanohybrids for high-performance sodiumion battery anode, J. Power Sources, 2015, vol. 273, p. 878.CrossRefGoogle Scholar
  246. 246.
    Rahman, M.M., Sultana, I., Chen, Z., Srikanth, M., Li, L.H., Dai, X.J., and Chen, Y., Ex situ electrochemical sodiation/desodiation observation of Co3O4 anchored carbon nanotubes: a high performance sodium-ion battery anode produced by pulsed plasma in a liquid, Nanoscale, 2015, vol. 7, p. 13088.CrossRefGoogle Scholar
  247. 247.
    Klavetter, K.C., Garcia, S., Dahal, N., Snider, J.L., de Souza, J.P., Cell, T.H., Cassara, M.A., Heller, A., Humphrey, S.M., and Mullins, C.B., Li- and Nareduction products of meso-Co3O4 form high-rate, stably cycling battery anode materials, J. Mater. Chem. A, 2014, vol. 2, p. 14209.CrossRefGoogle Scholar
  248. 248.
    Alcántara, R., Jaraba, M., Lavela, P., and Tirado, J.L., NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries, Chem. Mater., 2002, vol. 14, p. 2847.CrossRefGoogle Scholar
  249. 249.
    Thissen, A., Ensling, D., Madrigal, F.J.F., Jaegermann, W., Alcántara, R., Lavela, P., and Tirado, J.L., Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4, Chem. Mater., 2005, vol. 17, p. 5202.CrossRefGoogle Scholar
  250. 250.
    Chadwick, A.V., Savin, S.L.P., Fiddy, S., Alcántara, R., Lisbona, D.F., Lavela, P., Ortiz, G.F., and Tirado, J.L., Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4: X-ray Absorption Spectroscopic Study, J. Phys. Chem. C, 2007, vol. 111, p. 4636.CrossRefGoogle Scholar
  251. 251.
    Zhou, K., Hong, Z., Xie, C., Dai, H., and Huang, Z., Mesoporous NiCo2O4 nanosheets with enhance sodium ion storage properties, J. Alloys and Compounds, 2015, vol. 651, p. 24.CrossRefGoogle Scholar
  252. 252.
    Wu, X., Wu, W., Wang, K., Chen, W., and He, D., Synthesis and electrochemical performance of flowerlike MnCo2O4 as an anode material for sodium ion batteries, Mater. Lett, 2015, vol. 147, p. 85.CrossRefGoogle Scholar
  253. 253.
    Wang, L., Zhang, K., Hu, Z., Duan, W., Cheng, F., and Chen, J., Porous CuO nanowires as the anode of rechargeable Na-ion batteries, Nano Research., 2014, vol. 7, p. 199.CrossRefGoogle Scholar
  254. 254.
    Yuan, S., Huang, X.-L., Ma, D.-L., Wang, H.-G., Meng, F.-Z., and Zhang, X.-B., Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode, Adv. Mater., 2014, vol. 26, p. 2273.CrossRefGoogle Scholar
  255. 255.
    Zhang, L., Wang, Y., Xie, D., Tang, Y., Wu, C., Cui, L., Li, Y., Ning, X., and Shan, Z., In situ transmission electron microscopy study of the electrochemical sodiation process for a single CuO nanowire electrode, RSC Adv., 2016, vol. 6, p. 11441.CrossRefGoogle Scholar
  256. 256.
    Sun, W., Rui, X., Zhu, J., Yu, L., Zhang, Y., Xu, Z., Madhavi, S., and Yan, Q., Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage, J. Power Sources, 2015, vol. 274, p. 755.CrossRefGoogle Scholar
  257. 257.
    Sun, Q., Ren, Q.-Q., Li, H., and Fu, Z.-W., High capacity Sb2O4 thin film electrodes for rechargeable sodium battery, Electrochem. Commun., 2011, vol. 13, p. 1462.CrossRefGoogle Scholar
  258. 258.
    Zhou, X., Liu, X., Xu, Y., Liu, Y., Dai, Z., and Bao, J., An SbOx/Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries, J. Phys. Chem. C, 2014, vol. 118, p. 23527.CrossRefGoogle Scholar
  259. 259.
    Hu, M., Jiang, Y., Sun, W., Wang, H., Jin, C., and Yan, M., Reversible Conversion-Alloying of Sb2O3 as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 19449.CrossRefGoogle Scholar
  260. 260.
    Li, N., Liao, S., Sun, Y., Song, H.W., and Wang, C.X., Uniformly dispersed self-assembled growth of Sb2O3/Sb-graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability, J. Mater. Chem. A, 2015, vol. 3, p. 5820.CrossRefGoogle Scholar
  261. 261.
    Kim, H., Lim, E., Jo, C., Yoon, G., Hwang, J., Jeong, S., Lee, J., and Kang, K., Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material, Nano Energy, 2015, vol. 16, p. 62.CrossRefGoogle Scholar
  262. 262.
    Wang, X., Gao, Y., Shen, X., Li, Y., Kong, Q., Lee, S., Wang, Z., Yu, R., Hu, Y.-S., and Chen, L., Anti-P2 structured Na0.5NbO2 and its negative strain effect, Energy Environ. Sci., 2015, vol. 8, p. 2753.CrossRefGoogle Scholar
  263. 263.
    Nakayama, H., Nose, M., Nakanishi, S., and Iba, H., Electrochemical reactions of layered niobate material as novel anode for sodium ion batteries, J. Power Sources, 2015, vol. 287, p. 158.CrossRefGoogle Scholar
  264. 264.
    Qin, W., Chen, T., Hu, B., Sun, Z., and Pan, L., GeO2 decorated reduced graphene oxide as anode material of sodium ion battery, Electrochim. Acta, 2015, vol. 173, p. 193.CrossRefGoogle Scholar
  265. 265.
    Shimizu, M., Usui, H., Fujiwara, K., Yamane, K., and Sakaguchi, H., Electrochemical behavior of SiO as an anode material for Na-ion battery, J. Alloys Comp., 2015, vol. 640, p. 440.CrossRefGoogle Scholar
  266. 266.
    Hamani, D., Ati, M., Tarascon, J.-M., and Rozier, P., NaxVO2 as possible electrode for Na-ion batteries, Electrochem. Commun., 2011, vol. 13, p. 938.CrossRefGoogle Scholar
  267. 267.
    Venkatesh, G., Pralong, V., Lebedev, O.I., Caignaert, V., Bazin, P., and Raveau, B., Amorphous sodium vanadate Na1.5 + yVO3, a promising matrix for reversible sodium intercalation, Electrochem. Commun., 2014, vol. 40, p. 100.CrossRefGoogle Scholar
  268. 268.
    Muller-Bouvet, D., Baddour-Hadjean, R., Tanabe, M., Huynh, L.T.N., Le, M.L.P., and Pereira-Ramos, J.P., Electrochemically formed a'-NaV2O5: A new sodium intercalation compound, Electrochim. Acta, 2015, vol. 176, p. 586.CrossRefGoogle Scholar
  269. 269.
    Liu, P., Zhou, D., Zhu, K., Wu, Q., Wang, Y., Tai, G., Zhang, W., and Gu, Q., Bundle-like a'-NaV2O5 mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities, Nanoscale, 2016, vol. 8, p. 1975.CrossRefGoogle Scholar
  270. 270.
    Liang, L., Xu, Y., Wang, X., Wang, C., Zhou, M., Fu, Q., Wu, M., and Lei, Y., Intertwined Cu3V2O7(OH)2·2H2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries, J. Power Sources, 2015, vol. 294, p. 193.CrossRefGoogle Scholar
  271. 271.
    Hartung, S., Bucher, N., Chen, H.-Y., Al-Oweini, R., Sreejith, S., Borah, P., Yanli, Z., Kortz, U., Stimming, U., Hoster, H.E., and Srinivasan, M., Vanadium-based polyoxometalate as new material for sodium-ion battery anodes, J. Power Sources, 2015, vol. 288, p. 270.CrossRefGoogle Scholar
  272. 272.
    Qian, J., Xiong, Y., Cao, Y., Ai, X., and Yang, H., Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries, Nano Lett., 2014, vol. 14, p. 1865.CrossRefGoogle Scholar
  273. 273.
    Kim, Y., Kim, Y., Choi, A., Woo, S., Mok, D., Choi, N.S., Jung, Y.S., Ryu, J.H., Oh, S.M., and Lee, K.T., Tin phosphide as a promising anode material for Na-ion batteries, Adv. Mater., 2014, vol. 26, p. 4139.CrossRefGoogle Scholar
  274. 274.
    Usui, H., Sakata, T., Shimizu, M., and Sakaguchi, H., Electrochemical Na-insertion/Extraction Properties of Sn–P Anodes, Electrochemistry, 2015, vol. 83, p. 810.CrossRefGoogle Scholar
  275. 275.
    Jang, J.Y., Lee, Y., Kim, Y., Lee, J., and Lee, S-M., Lee, K.T., and Choi, N-S., Interfacial architectures based on a binary additive combination for high-performance Sn4P3 anodes in sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 8332.CrossRefGoogle Scholar
  276. 276.
    Liu, S., Zhang, H., Xu, L., Ma, L., and Chen, X., Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries, J. Power Sources, 2016, vol. 304, p. 346.CrossRefGoogle Scholar
  277. 277.
    Yabuuchi, N., Matsuura, Y., Ishikawa, T., Kuze, S., Son, J-Y., Cui, Y-T., Oji, H., and Komaba, S., Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface-Stabilization Mechanism in Aprotic Solvent, ChemElectroChem., 2014, vol. 1, p. 580.CrossRefGoogle Scholar
  278. 278.
    Kim, Y., Park, Y., Choi, A., Choi, N.-S., Kim, J., Lee, J., Ryu, J.H., Oh, S.M, and Lee, K.T., An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries, Adv. Mater., 2013, vol. 25, p. 3045.CrossRefGoogle Scholar
  279. 279.
    Qian, J., Wu, X., Cao, Y., Ai, X., and Yang, H., High capacity and rate capability of amorphous phosphorus for sodium ion batteries, Angew. Chem., Intern. Ed., 2013, vol. 52, p. 4633.CrossRefGoogle Scholar
  280. 280.
    Mortazavi, M., Ye, Q., Birbilis, N., and Medhekar, N.V., High capacity group-15 alloy anodes for Na-ion batteries: Electrochemical and mechanical insights, J. Power Sources, 2015, vol. 285, p. 29.CrossRefGoogle Scholar
  281. 281.
    Qu, B., Ma, C., Ji, G., Xu, C., Xu, J., Meng, Y.S., Wang, T., and Lee, J.Y., Layered SnS2-reduced graphene oxide composite—A high-capacity, highrate, and long-cycle life sodium-ion battery anode material, Adv. Mater., 2014, vol. 26, p. 3854.CrossRefGoogle Scholar
  282. 282.
    Ma, C., Xu, J., Alvarado, J., Qu, B., Somerville, J., Lee, J.Y., and Meng, Y.S., Investigating the Energy Storage Mechanism of SnS2-rGO Composite Anode for Advanced Na-IonBatteries, Chem. Mater., 2015, vol. 27, p. 5633.CrossRefGoogle Scholar
  283. 283.
    Liu, J., Kopold, P., Wu, C., Van Aken, P.A., Maier, J., and Yu, Y., Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 3531.CrossRefGoogle Scholar
  284. 284.
    Choi, S.H. and Kang, Y.C., Synergetic Effect of Yolk- Shell Structure and Uniform Mixing of SnS-MoS2 Nanocrystals for Improved Na-Ion Storage Capabilities, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 24694.CrossRefGoogle Scholar
  285. 285.
    Wu, L., Hu, X., Qian, J., Pei, F., Wu, F., Mao, R., Ai, X., Yang, H., and Cao, Y., A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 7181.CrossRefGoogle Scholar
  286. 286.
    Kim, Y., Kim, Y., Park, Y., Jo, Y.N., Kim, Y.-J., Choi, N.-S., and Lee, K.T., SnSe alloy as a promising anode material for Na-ion batteries, Chem. Commun., 2015, vol. 51, p. 50.CrossRefGoogle Scholar
  287. 287.
    Park, J., Kim, J-S., Park, J-W., Nam, T-H., Kim, K-W., Ahn, J-H., Wang, G., and Ahn, H-J., Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization, Electrochim. Acta, 2013, vol. 92, p. 427.CrossRefGoogle Scholar
  288. 288.
    Mortazavi, M., Wang, C., Deng, J., Shenoy, V.B., and Medhekar, N.V., Ab initio characterization of layered MoS2 as anode for sodium-ion batteries, J. Power Sources, 2014, vol. 268, p. 279.CrossRefGoogle Scholar
  289. 289.
    Bang, G.S., Nam, K.W., Kim, J.Y., Shin, J., Choi, J.W., and Choi, S-Y., Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 7084.CrossRefGoogle Scholar
  290. 290.
    Ryu, W.-H., Jung, J.-W., Park, K., Kim, S.-J., and Kim, I.-D., Vine-like MoS2 anode materials selfassembled from 1-D nanofibers for high capacity sodium rechargeable batteries, Nanoscale, 2014, vol. 6, p. 10975.CrossRefGoogle Scholar
  291. 291.
    Hu, Z., Wang, L., Zhang, K., Wang, J., Cheng, F., Tao, Z., and Chen, J., MoS2 Nanoflowers with Expanded Interlayers as High-Performance Anodes for Sodium-Ion Batteries, Angew. Chem., Intern. Ed., 2014, vol. 53, p. 12794.CrossRefGoogle Scholar
  292. 292.
    Kumar, P.R., Jung, Y.H., and Kim, D.K., High performance of MoS2 microflowers with a water-based binder as an anode for Na-ion batteries, RSC Adv., 2015, vol. 5, p. 79845.CrossRefGoogle Scholar
  293. 293.
    Zhu, C., Mu, X., van Aken, P.A., Yu, Y., and Maier, J., Single-Layered Ultrasmall Nanoplates of MoS2Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage, Angew. Chem., Intern. Ed., 2014, vol. 53, p. 2152.CrossRefGoogle Scholar
  294. 294.
    David, L., Bhandavat, R., and Singh, G., MoS2/graphene composite paper for sodium-ion battery electrodes, ACS Nano, 2014, vol. 8, p. 1759.CrossRefGoogle Scholar
  295. 295.
    Wang, Y.-X., Chou, S.-L., Wexler, D., Liu, H.-K., and Dou, S-X., High-Performance Sodium-Ion Batteries and Sodium-Ion Pseudocapacitors Based on MoS2/Graphene Composites, Chemistry A European J., 2014, vol. 20, p. 9607.CrossRefGoogle Scholar
  296. 296.
    Qin, W., Chen, T., Pan, L., Niu, L., Hu, B., Li, D., Li, J., and Sun, Zh., MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance, Electrochim. Acta, 2015, vol. 153, p. 55.CrossRefGoogle Scholar
  297. 297.
    Wang, J., Liu, J., Yang, H., Chao, D., Yan, J., Savilov, S.V., Lin, J., and Shen, Z.X., MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: Constructing an ideal heterostructure for enhanced Naion storage, Nano Energy, 2016, vol. 20, p. 1.CrossRefGoogle Scholar
  298. 298.
    Ahmed, B., Anjum, D.H., Hedhili, M.N., and Alshareef, H.N., Mechanistic Insight into the Stability of HfO2-Coated MoS2 Nanosheet Anodes for Sodium Ion Batteries, Small, 2015, vol. 11, p. 4341.CrossRefGoogle Scholar
  299. 299.
    Miki, Y., Nakazato, D., Ikuta, H., Uchida, T., and Wakihara, M., Amorphous MoS2 as the cathode of lithium secondary batteries, J. Power Sources, 1995, vol. 54, p. 508.CrossRefGoogle Scholar
  300. 300.
    Zhang, C., Wu, H.B., Guo, Z., and Lou, X.W., Facile synthesis of carbon-coated MoS2 nanorods with enhanced lithium storage properties, Electrochem. Commun., 2012, vol. 20, p. 7.CrossRefGoogle Scholar
  301. 301.
    Du, G., Guo, Z., Wang, S., Zeng, R., Chen, Z., and Liu, H., Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries, Chem. Commun., 2010, vol. 46, p. 1106.CrossRefGoogle Scholar
  302. 302.
    Ding, S., Zhang, D., Chen, J.S., and Lou, X.W., Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties, Nanoscale, 2012, vol. 4, p. 95.CrossRefGoogle Scholar
  303. 303.
    Wang, H., Lan, X., Jiang, D., Zhang, Y., Zhong, H., Zhang, Z., and Jiang, Y., Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries, J. Power Sources, 2015, vol. 283, p. 187.CrossRefGoogle Scholar
  304. 304.
    Ko, Y.N., Choi, S.H., Park, S.B., and Kang, Y.C., Hierarchical MoSe2 yolk–shell microspheres with superior Na-ion storage properties, Nanoscale, 2014, vol. 6, p. 10511.CrossRefGoogle Scholar
  305. 305.
    Shi, Z.-T., Kang, W., Xu, J., Sun, L.-L., Wu, C., Wang, L., Yu, Y.-Q., Yu, D.Y.W., Zhang, W., and Lee, C.-S., In Situ Carbon-Doped Mo(Se0.85S0.15)2 Hierarchical Nanotubes as Stable Anodes for High- Performance Sodium-Ion Batteries, Small, 2015, vol. 11, p. 5667.CrossRefGoogle Scholar
  306. 306.
    Su, D., Dou, S., and Wang, G., WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances, Chem. Commun., 2014, vol. 50, p. 4192.CrossRefGoogle Scholar
  307. 307.
    Sun, W., Rui, X., Zhang, D., Jiang, Y., Sun, Z., Liu, H., and Dou, S., Bismuth sulfide: A high-capacity anode for sodium-ion batteries, J. Power Sources, 2016, vol. 309, p. 135.CrossRefGoogle Scholar
  308. 308.
    Zhu, Y., Nie, P., Shen, L., Dong, S., Sheng, Q., Li, H., Luo, H., and Zhang, X., High rate capability and superior cycle stability of a flower-like Sb2S3anode for high-capacity sodium ion batteries, Nanoscale, 2015, vol. 7, p. 3309.CrossRefGoogle Scholar
  309. 309.
    Liao, Y., Park, K-S., Xiao, P., Henkelman, G., Li, W., and Goodenough, J.B., Sodium Intercalation Behavior of Layered NaxNbS2 (0 = x = 1), Chem. Mater., 2013, vol. 25, p. 1699.CrossRefGoogle Scholar
  310. 310.
    Ryu, H.-S., Kim, J.-S., Park, J.-S., Park, J.-W., Kim, K.-W., Ahn, J.-H., Nam, T.-H., Wang, G., and Ahn, H.-J., Electrochemical properties and discharge mechanism of Na/TiS2 cells with liquid electrolyte at room temperature, J. Electrochem. Soc., 2013, vol. 160, p. A338.CrossRefGoogle Scholar
  311. 311.
    Kim, T.B., Jung, W.H., Ryu, H.S., Kim, K.W., Ahn, J.H., Cho, K.K., Cho, G.B., Nam, T.H., Ahn, I.S., and Ahn, H.J., Electrochemical characteristics of Na/FeS2 battery by mechanical alloying, J. Alloys and Compounds, 2008, vol. 449, p. 304.CrossRefGoogle Scholar
  312. 312.
    Li, W., Zhou, M., Li, H., Wang, K., Cheng, S., and Jiang, K., Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries, Electrochem. Commun., 2015, vol. 60, p. 74.CrossRefGoogle Scholar
  313. 313.
    Wu, C., Kopold, P., Ding, Y.-L., van Aken, P.A., Maier, J., and Yu, Y., Synthesizing Porous NaTi2(PO4)3 Nanoparticles Embedded in 3D Graphene Networks for High-Rate and Long Cycle- Life Sodium Electrodes, ACS Nano, 2015, vol. 9, p. 6610.CrossRefGoogle Scholar
  314. 314.
    Yang, G., Song, H., Wu, M., and Wang, C., Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10000 cycle life, J. Mater. Chem. A, 2015, vol. 3, p. 18718.CrossRefGoogle Scholar
  315. 315.
    Wang, W., Jiang, B., Hu, L., and Jiao, S., Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 1341.CrossRefGoogle Scholar
  316. 316.
    Senguttuvan, P., Rousse, G., Arroyo, M.E., De Dompablo, Y., Vezin, H., Tarascon, J.-M., and Palacín, M.R., Low-Potential Sodium Insertion in a NASICONType Structure through the Ti(III)/Ti(II) Redox Couple, J. Amer. Chem. Soc., 2013, vol. 135, p. 3897.CrossRefGoogle Scholar
  317. 317.
    Jian, Z., Zhao, L., Pan, H., Hu, Y-S., Li, H., Chen, W., and Chen, L., Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries, Electrochem. Commun., 2012, vol. 14, p. 86.CrossRefGoogle Scholar
  318. 318.
    Li, G., Jiang, D., Wang, H., Lan, X., Zhong, H., and Jiang, Y., Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries, J. Power Sources, 2014, vol. 265, p. 325.CrossRefGoogle Scholar
  319. 319.
    Bleith, P., Kaiser, H., Novák, P., and Villevieille, C., In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries, Electrochim. Acta, 2015, vol. 176, p. 18.CrossRefGoogle Scholar
  320. 320.
    Lin, X., Li, P., Shao, L., Zheng, X., Shui, M., Long, N., Wang, D., and Shu, J., CNT-enhanced electrochemical property and sodium storage mechanism of Pb(NO3)2 as anode material for Na-ion batteries, Electrochim. Acta, 2015, vol. 169, p. 382.CrossRefGoogle Scholar
  321. 321.
    Li, P., Wang, P., Zheng, X., Yu, H., Qian, S., Shui, M., Lin, X., Long, N., and Shu, J., Enhanced sodium storage property of copper nitrate hydrate by carbon nanotube, J. Electroanal. Chem., 2015, vol. 755, p. 92.CrossRefGoogle Scholar
  322. 322.
    Senguttuvan, P., Rousse, G., Vezin, H., Tarascon, J.-M., and Palacín, M.R., Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries, Chem. Mater., 2013, vol. 25, p. 2391.CrossRefGoogle Scholar
  323. 323.
    Wang, D., Wu, K., Shao, L., Shui, M., Ma, R., Lin, X., Long, N., Ren, Y., and Shu J., Facile fabrication of Pb(NO3)2/C as advanced anode material and its lithium storage mechanism, Electrochim. Acta, 2014, vol. 120, p. 110.CrossRefGoogle Scholar
  324. 324.
    Lin, X., Shu, J., Wu, K., Shao, L., Li, P., Shui, M., Wang, D., Long, N., and Ren, Y., Improved electrochemical property of Pb(NO3)2 by carbon black, graphene and carbon nanotube, Electrochim. Acta, 2014, vol. 137, p. 767.CrossRefGoogle Scholar
  325. 325.
    Wu, K., Wang, D., Shao, L., Shui, M., Ma, R., Lao, M., Long, N., Ren, Y., and Shu, J., Copper nitrate hydrate as novel high capacity anode material for lithium-ion batteries, J. Power Sources, 2014, vol. 248, p. 205.CrossRefGoogle Scholar
  326. 326.
    Wang, L.P., Zhao, Y., Wei, C., Wong, C., Srinivasan, M., and Xu, Z.J., Polycrystalline zinc stannate as an anode material for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 14033.CrossRefGoogle Scholar
  327. 327.
    Senguttuvan, P., Rousse, G., Oró-Solé, J., Tarascon, J.-M., and Palacín, M.R., A low temperature TiP2O7 polymorph exhibiting reversible insertion of lithium and sodium ions, J. Mater. Chem. A, 2013, vol. 1, p. 15284.CrossRefGoogle Scholar
  328. 328.
    Li, W.-J., Yang, Q.-R., Chou, S.-L., Wang, J.-Z., and Liu, H.-K., Cobalt phosphide as a new anode material for sodium storage, J. Power Sources, 2015, vol. 294, p. 627.CrossRefGoogle Scholar
  329. 329.
    Zhao, L., Zhao, J., Hu, Y.-S., Li, H., Zhou, Z., Armand, M., and Chen, L., Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery, Advanced Energy Materials, 2012, vol. 2, p. 962.CrossRefGoogle Scholar
  330. 330.
    Park, Y., Shin, D-S., Woo, S.H., Choi, N.S., Shin, K.H., Oh, S.M., Lee, K.T., and Hong, S.Y., Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries, Adv. Mater., 2012, vol. 24, p. 3562.CrossRefGoogle Scholar
  331. 331.
    Castillo-Martínez, E., Carretero-González, J., and Armand, M., Polymeric Schiff Bases as Low-Voltage Redox Centers for Sodium-Ion Batteries, Angew. Chem., Intern. Ed., 2014, vol. 53, p. 5341.CrossRefGoogle Scholar
  332. 332.
    López-Herraiz, M., Castillo-Martínez, E., Carretero-González, J., Carrasco, J., Rojo, T., and Armand, M., Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers, Energy Environ. Sci., 2015, vol. 8, p. 3233.CrossRefGoogle Scholar
  333. 333.
    Choi, A., Kim, Y.K., Kim, T.K., Kwon, M-S., Lee, K.T., and Moon, H.R., 4,4'-Biphenyldicarboxylate sodium coordination compounds as anodes for Na-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 14986.CrossRefGoogle Scholar
  334. 334.
    Eguía-Barrio, A., Castillo-Martínez, E., Liu, X., Dronskowski, R., Armand, M., and Rojo, T., Carbodiimides: New materials applied as anode electrodes for sodium and lithium ion batteries, J. Mater. Chem. A, 2016, vol. 4, p. 1608.CrossRefGoogle Scholar
  335. 335.
    Li, Z., Zhou, J., Xu, R., Liu, S., Wang, Y., Li, P., Wu, W., and Wu, M., Synthesis of three dimensional extended conjugated polyimide and application as sodium-ion battery anode, Chem. Eng. J., 2016, vol. 287, p. 516.CrossRefGoogle Scholar
  336. 336.
    Abouimrane, A., Weng, W., Eltayeb, H., Cui, Y., Niklas, J., Poluektov, O., and Amine, K., Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells, Energy and Environmental Science, 2012, vol. 5, p. 9632.CrossRefGoogle Scholar
  337. 337.
    Abraham, K.M., Intercalation positive electrodes for rechargeable sodium cells, Solid State Ionics, 1982, vol. 7, p. 199.CrossRefGoogle Scholar
  338. 338.
    Xu, J., Lee, D.H., and Meng, Y.S., Recent advances in sodium intercalation positive electrode materials for sodium ion battreies, Funct. Mater. Lett., 2013, vol. 6, Article number 1330001.CrossRefGoogle Scholar
  339. 339.
    Xiang, X., Zhang, K., and Chen, J., Recent advances and prospects of cathode materials for sodium-ion batteries, Adv. Mater., 2015, vol. 27, p. 5343.CrossRefGoogle Scholar
  340. 340.
    Kubota, K., Yabuuchi, N., Yoshida, H., Dahbi, M., and Komaba, S., Layered oxides as positive electrode materials for Na-ion batteries, MRS Bulletin, 2014, vol. 39, p. 416.CrossRefGoogle Scholar
  341. 341.
    Han, M.H., Gonzalo, E., Singh, G., and Rojo, T., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 81.CrossRefGoogle Scholar
  342. 342.
    Clément, R.J., Bruce, P.G., and Grey, C.P., Review— Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials, J. Electrochem. Soc., 2015, vol. 162, p. A2589.CrossRefGoogle Scholar
  343. 343.
    Masquelier, C. and Croguennec, L., Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries, Chem. Rev., 2013, vol. 113, p. 6552.CrossRefGoogle Scholar
  344. 344.
    Yabuuchi, N. and Komaba, S., Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries, Sci. Technol. Adv. Mater., 2014, vol. 15, Article number 043501.CrossRefPubMedCentralGoogle Scholar
  345. 345.
    Toumar, A.J., Ong, S.P., Richards, W.D., Dacek, S., and Ceder, G., Vacancy Ordering in O3 -Type Layered Metal Oxide Sodium-Ion Battery Cathodes, Phys. Rev. Appl., 2015, vol. 4, Article number 064002.CrossRefGoogle Scholar
  346. 346.
    Delmas, C., Fouassier, C., and Hagenmuller, P., Structural classification and properties of the layered oxides, Phys. B + C, 1980, vol. 99, p. 81.CrossRefGoogle Scholar
  347. 347.
    Kim, S., Ma, X., Ong, S.P., and Ceder, G., A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali deintercalation, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 15571.CrossRefGoogle Scholar
  348. 348.
    Braconnier, J.J., Delmas, C., Fouassier, C., and Hagenmuller, P., Comportement electrochimique des phases NaxCoO2, Mat. Res. Bull., 1980, vol. 15, p. 1797.CrossRefGoogle Scholar
  349. 349.
    Delmas, C., Braconnier, J.-J., Fouassier, C., and Hagenmuller, P., Electrochemical intercalation of sodium in NaxCoO2 bronzes, Solid State Ionics, 1981, vols. 3–4 (C), p. 165.CrossRefGoogle Scholar
  350. 350.
    Braconnier, J.J., Delmas, C., and Hagenmuller, P., Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2, Mat. Res. Bull., 1982, vol. 17, p. 993.CrossRefGoogle Scholar
  351. 351.
    Maazaz, A., Delmas, C., and Hagenmuller, P., A study of the NaxTiO2 system by electrochemical deintercalation, J. Inclusion Phenom., 1983, vol. 1, p. 45.CrossRefGoogle Scholar
  352. 352.
    Molenda, J., Delmas, C., and Hagenmuller, P., Electronic and electrochemical properties of NaxCoO2 - y cathode, Solid State Ionics, 1983, vol. 9–10, p. 431.CrossRefGoogle Scholar
  353. 353.
    Mendiboure, A., Delmas, C., and Hagenmuller, P., Electrochemical intercalation and deintercalation of NaxMnO2 bronzes, J. Solid State Chem., 1985, vol. 57, p. 323.CrossRefGoogle Scholar
  354. 354.
    Kikkawa, S., Miyazaki, S., and Koizumi, M., Electrochemical aspects of the deintercalation of layered AMO2 compounds, J. Power Sources, 1985, vol. 14, p. 231.CrossRefGoogle Scholar
  355. 355.
    Shacklette, L.W., Jew, T.R., and Townsend, L., Rechargeable Electrodes from Sodium Cobalt Bronzes, J. Electrochem. Soc., 1998, vol. 135, p. 2669.CrossRefGoogle Scholar
  356. 356.
    Doeff, M.M., Peng, M.Y., Ma, Y., and De Jonghe, L., Orthorhombic NaxMnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer Batteries, J. Electrochem. Soc., 1994, vol. 141, p. L145.CrossRefGoogle Scholar
  357. 357.
    Doeff, M.M., Richardson, T.J., and Kepley, L., Lithium Insertion Processes of Orthorhombic NaxMnO2- Based Electrode Materials, J. Electrochem. Soc., 1996, vol. 143, p. 2507.CrossRefGoogle Scholar
  358. 358.
    Sauvage, F., Laffont, L., Tarascon, J.-M., and Baudrin, E., Study of the Insertion/Deinsertion Mechanism of Sodium into Na0.44MnO2, Inorg. Chem., 2007, vol. 46, p. 3289.CrossRefGoogle Scholar
  359. 359.
    Hosono, E., Saito, T., Hoshino, J., Okubo, M., Saito, Y., Nishio-Hamane, D., Kudo, T., and Zhou, H., High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode, J. Power Sources, 2012, vol. 217, p. 43.CrossRefGoogle Scholar
  360. 360.
    Dai, K., Mao, J., Song, X., Battaglia, V., and Liu, G., Na0.44MnO2 with very fast sodium diffusion and stable cycling synthesized via polyvinylpyrrolidone-combustion method, J. Power Sources, 2015, vol. 285, p. 161.CrossRefGoogle Scholar
  361. 361.
    Qiao, R., Dai, K., Mao, J., Weng, T.-C., Sokaras, D., Nordlund, D., Song, X., Battaglia, V.S., Hussain, Z., Liu, G., and Yang, W., Revealing and suppressing surface Mn(II) formation of Na0.44MnO2 electrodes for Na-ion batteries, Nano Energy, 2015, vol. 16, p. 186.CrossRefGoogle Scholar
  362. 362.
    Zhou, X., Guduru, R.K., and Mohanty, P., Synthesis and characterization of Na0.44MnO2 from solution precursors, J. Mater. Chem. A, 2013, vol. 1, p. 2757.CrossRefGoogle Scholar
  363. 363.
    Zhao, L., Ni, J., Wang, H., and Gao, L., Na0.44MnO2- CNT electrodes for non-aqueous sodium batteries, RSC Advances, 2013, vol. 3, p. 6650.CrossRefGoogle Scholar
  364. 364.
    Su, D., Wang, C., Ahn, H.-J., and Wang, G., Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance, Chemistry—A European J., 2013, vol. 19, p. 10884.CrossRefGoogle Scholar
  365. 365.
    Ma, X., Chen, H., and Ceder, G., Electrochemical Properties of Monoclinic NaMnO2, J. Electrochem. Soc., 2011, vol. 158, p. A1307.CrossRefGoogle Scholar
  366. 366.
    Billaud, J., Clément, R.J., Armstrong, A.R., Canales-Vázquez, J., Rozier, P., Grey, C.P., and Bruce, P.G., ß-NaMnO2: A high-performance cathode for sodiumion batteries, J. Amer. Chem. Soc., 2014, vol. 136, p. 17243.CrossRefGoogle Scholar
  367. 367.
    Guo, S., Yu, H., Jian, Z., Liu, P., Zhu, Y., Guo, X., Chen, M., and Zhou, H., A high-capacity, low-cost layered sodium manganese oxide material as cathode for sodium-ion batteries, ChemSusChem., 2014, vol. 7, p. 2115.CrossRefGoogle Scholar
  368. 368.
    Cao, Y., Xiao, L., Wang, W., Choi, D., Nie, Z., Yu, J., Saraf, L.V., Yang, Z., and Liu, J., Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life, Adv. Mater., 2011, vol. 23, p. 3155.CrossRefGoogle Scholar
  369. 369.
    Meng, Y.S., Hinuma, Y., and Ceder, G., An investigation of the sodium patterning in NaxCoO2 (0.5 = x = 1) by density functional theory methods, J. Chem. Phys., 2008, vol. 128, art. no. 104708.CrossRefGoogle Scholar
  370. 370.
    Bhide, A. and Hariharan, K., Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery, Solid State Ionics, 2011, vol. 192, p. 360.CrossRefGoogle Scholar
  371. 371.
    Berthelot, R., Carlier, D., and Delmas, C., Electrochemical investigation of the P2-NaxCoO2 phase diagram, Nat. Mater., 2011, vol. 10, p. 74.CrossRefGoogle Scholar
  372. 372.
    D’Arienzo, M., Ruffo, R., Scotti, R., Morazzoni, F., Mari, C.M., and Polizzi, S., Layered Na0.71CoO2: a powerful candidate for viable and high performance Na-batteries, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 5945.CrossRefGoogle Scholar
  373. 373.
    Shibata, T., Kobayashi, W., and Moritomo, Y., Intrinsic rapid Na+ intercalation observed in NaxCoO2 thin film, AIP Adv., 2013, vol. 3, Article 032104.CrossRefGoogle Scholar
  374. 374.
    Ding, J.J., Zhou, Y.N., Sun, Q., Yu, X.Q., Yang, X.Q., and Fu, Z.W., Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries, Electrochim. Acta, 2013, vol. 87, p. 388.CrossRefGoogle Scholar
  375. 375.
    Rai, A.K., Anh, L.T., Gim, J., Mathew, V., and Kim, J., Electrochemical properties of NaxCoO2 (x ~ 0.71) cathode for rechargeable sodium-ion batteries, Ceramics International, 2014, vol. 40, p. 2411.CrossRefGoogle Scholar
  376. 376.
    Molenda, J., Baster, D., Stoklosa, A., Gutowska, M.U., Szewczyk, A., Puzniak, R., Dybko, K., Szot, M., and Tobola, J., Correlation between electronic and electrochemical properties of NaxCoO2–y, Solid State Ionics, 2014, vol. 268, p. 179.CrossRefGoogle Scholar
  377. 377.
    Baster, D., Dybko, K., Szot, M., Swierczek, K., and Molenda, J., Sodium intercalation in NaxCoO2 - y— Correlation between crystal structure, oxygen nonstoichiometry and electrochemical properties, Solid State Ionics, 2014, vol. 262, p. 206.CrossRefGoogle Scholar
  378. 378.
    Vassilaras, P., Ma, X., Li, X., and Ceder, G., Electrochemical Properties of Monoclinic NaNiO2, J. Electrochem. Soc., 2013, vol. 160, p. A207.CrossRefGoogle Scholar
  379. 379.
    Han, M.H., Gonzalo, E., Casas-Cabanas, M., and Rojo, T., Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process, J. Power Sources, 2014, vol. 258, p. 266.CrossRefGoogle Scholar
  380. 380.
    Yabuuchi, N., Yoshida, H., and Komaba, S., Crystal Structures and Electrode Performance of Alpha- NaFeO2 for Rechargeable Sodium Batteries, Electrochemistry, 2012, vol. 80, p. 716.CrossRefGoogle Scholar
  381. 381.
    Zhao, J., Zhao, L., Dimov, N., Okada, S., and Nishida, T., Electrochemical and Thermal Properties of a-NaFeO2 Cathode for Na-Ion Batteries, J Electrochem. Soc., 2013, vol. 160, p. A3077.CrossRefGoogle Scholar
  382. 382.
    Komaba, S., Takei, C., Nakayama, T., Ogata, A., and Yabuuchi, N., Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2, Electrochem. Commun., 2010, vol. 12, p. 355.CrossRefGoogle Scholar
  383. 383.
    Nohira, T., Ishibashi, T., and Hagiwara, R., Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO2 positive electrode at 423 K for a sodium secondary battery, J. Power Sources, 2012, vol. 205, p. 506.CrossRefGoogle Scholar
  384. 384.
    Ding, J.-J., Zhou, Y.-N., Sun, Q., and Fu, Z.-W., Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries, Electrochem. Commun., 2012, vol. 22, p. 85.CrossRefGoogle Scholar
  385. 385.
    Chen, C-Y., Matsumoto, K., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA?KFSA, J. Power Sources, 2013, vol. 237, p. 52.CrossRefGoogle Scholar
  386. 386.
    Kubota, K., Ikeuchi, I., Nakayama, T., Takei, C., Yabuuchi, N., Shiiba, H., Nakayama, M., and Komaba, S., New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction, J. Phys. Chem. C, 2015, vol. 119, p. 166.CrossRefGoogle Scholar
  387. 387.
    Xia, X. and Dahn, J.R., NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes, Electrochem. Solid-State Lett., 2012, vol. 15, p. A1.CrossRefGoogle Scholar
  388. 388.
    Komaba, S., Nakayama, T., Ogata, A., Shimizu, T., Takei, C., Takada, S., Hokura, A., and Nakai, I., Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2, ECS Transactions, 2009, vol. 16 (42), p. 43.CrossRefGoogle Scholar
  389. 389.
    Didier, C., Guignard, M., Denage, C., Szajwaj, O., Ito, S., Saadoune, I., Darriet, J., and Delmas, C., Electrochemical Na-deintercalation from NaVO2, Electrochem. Solid-State Lett., 2011, vol. 14, p. A75.CrossRefGoogle Scholar
  390. 390.
    Guignard, M., Didier, C., Darriet, J., Bordet, P., Elkaïm, E., and Delmas, C., P2-NaxVO2 system as electrodes for batteries and electron-correlated materials, Nature Mater., 2013, vol. 12, p. 74.CrossRefGoogle Scholar
  391. 391.
    Lu, Z. and Dahn, J.R., Can All the Lithium be Removed from T2 Li2/3[Ni1/3Mn2/3]O2?, J. Electrochem. Soc., 2001, vol. 148, p. A710.CrossRefGoogle Scholar
  392. 392.
    Lu, Z. and Dahn, J.R., In Situ X-Ray Diffraction Study of P2 Na2/3[Ni1/3Mn2/3]O2, J. Electrochem. Soc., 2001, vol. 148, p. A1225.CrossRefGoogle Scholar
  393. 393.
    Wang, H., Yang, B., Liao, X.-Z., Xu, J., Yang, D., He, Y.-S., and Ma, Z.-F., Electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 cathode material for sodium ion batteries when cycled in different voltage ranges, Electrochim. Acta, 2013, vol. 113, p. 200.CrossRefGoogle Scholar
  394. 394.
    Lee, D.H., Xu, J., and Meng, Y.S., An advanced cathode for Na-ion batteries with high rate and excellent structural stability, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 3304.CrossRefGoogle Scholar
  395. 395.
    Yang, D., Liao, X.-Z., Shen, J., He, Y.-S., and Ma, Z.-F., A flexible and binder-free reduced graphene oxide/Na2/3[Ni1/3Mn2/3]O2 composite electrode for high-performance sodium ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 6723.CrossRefGoogle Scholar
  396. 396.
    Komaba, S., Yabuuchi, N., Nakayama, T., Ogata, A., Ishikawa, T., and Nakai, I., Study on the reversible electrode reaction of Na1–xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery, Inorg. Chem., 2012, vol. 51, p. 6211.CrossRefGoogle Scholar
  397. 397.
    Zhao, J., Xu, J., Lee, D.H., Dimov, N., Meng, Y.S., and Ok, S., Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries, J. Power Sources, 2014, vol. 264, p. 235.CrossRefGoogle Scholar
  398. 398.
    Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., and Komaba, S., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nature Materials, 2012, vol. 11, p. 512.CrossRefGoogle Scholar
  399. 399.
    Park, K., Han, D., Kim, H., Chang, W.-S., Choi, B., Anass, B., and Lee, S., Characterization of a P2-type chelating-agent-assisted Na2/3Fe1/2Mn1/2O2 cathode material for sodium-ion batteries, RSC Adv., 2014, vol. 4, p. 22798.CrossRefGoogle Scholar
  400. 400.
    Kalluri, S., Hau Seng, K., Kong Pang, W., Guo, Z., Chen, Z., Liu, H.-K., and Dou, S.X., Electrospun P2- type Na2/3(Fe1/2Mn1/2)O2 hierarchical nanofibers as cathode material for sodium-ion batteries, ACS Applied Materials and Interfaces, 2014, vol. 6, p. 8953.CrossRefGoogle Scholar
  401. 401.
    Xu, J., Chou, S.-L., Wang, J.-L., Liu, H.-K., and Dou, S.-X., Layered P2-Na0.66Fe0.5Mn0.5O2 Cathode Material for Rechargeable Sodium-Ion Batteries, ChemElectroChem., 2014, vol. 1, p. 371.CrossRefGoogle Scholar
  402. 402.
    Pang, W.K., Kalluri, S., Peterson, V.K., Sharma, N., Kimpton, J., Johannessen, B., Liu, H.K., Dou, S.X., and Guo, Z., Interplay between electrochemistry and phase evolution of the P2-type Nax(Fe1/2Mn1/2)O2 cathode for use in sodium-ion batteries, Chem. Mater., 2015, vol. 27, p. 3150.CrossRefGoogle Scholar
  403. 403.
    Singh, G., López Del Amo, J.M., Galceran, M., Pérez-Villar, S., and Rojo, T., Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2, J. Mater. Chem. A, 2015, vol. 3, p. 6954.CrossRefGoogle Scholar
  404. 404.
    Carlier, D., Cheng, J.H., Berthelot, R., Guignard, M., Yoncheva, M., Stoyanova, R., Hwang, B.J., and Delmas, C., The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery, Dalton Trans., 2011, vol. 40, p. 9306.CrossRefGoogle Scholar
  405. 405.
    Bucher, N., Hartung, S., Gocheva, I., Cheah, Y.L., Srinivasan, M., and Hoster, H.E., Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries, J. Solid State Electrochem., 2013, vol. 17, p. 1923.CrossRefGoogle Scholar
  406. 406.
    Nghia, N.V., Ou, P.-W., and Hung, I.-M., Synthesis and Electrochemical Properties of Sodium Manganese- based Oxide Cathode Material for Sodium-ion Batteries, Electrochim. Acta, 2015, vol. 161, p. 63.CrossRefGoogle Scholar
  407. 407.
    Billaud, J., Singh, G., Armstrong, A.R., Gonzalo, E., Roddatis, V., Armand, M., Rojo, T., and Bruce, P.G., Na0.67Mn1 - xMgxO2 (0 = x = 0.2): a high capacity cathode for sodium-ion batteries, Energy Environ. Sci., 2014, vol. 7, p. 1387.CrossRefGoogle Scholar
  408. 408.
    Buchholz, D., Vaalma, C., Chagas, L.G., and Passerini, S., Mg-doping for improved long-term cyclability of layered Na-ion cathode materials ? The example of P2-type NaxMg0.11Mn0.89O2, J. Power Sources, 2015, vol. 282, p. 581.CrossRefGoogle Scholar
  409. 409.
    Yabuuchi, N., Hara, R., Kubota, K., Paulsen, J., Kumakura, S., and Komaba, S., A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity, J. Mater. Chem. A, 2014, vol. 2, p. 16851.CrossRefGoogle Scholar
  410. 410.
    Han, S.C., Lim, H., Jeong, J., Ahn, D., Park, W.B., Sohn, K-S., and Pyo, M., Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries, J. Power Sources, 2015, vol. 277, p. 9.CrossRefGoogle Scholar
  411. 411.
    Matsui, M., Mizukoshi, F., and Imanishi, N., Improved cycling performance of P2-type layered sodium cobalt oxide by calcium substitution, J Power Sources, 2015, vol. 280, p. 205.CrossRefGoogle Scholar
  412. 412.
    Yoshida, H., Yabuuchi, N., and Komaba, S., NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries, Electrochem. Commun., 2013, vol. 34, p. 60.CrossRefGoogle Scholar
  413. 413.
    Yu, H., Guo, S., Zhu, Y., Ishida, M., and Zhou, H., Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries, Chem. Commun., 2014, vol. 50, p. 457.CrossRefGoogle Scholar
  414. 414.
    Ma, J., Bo, S.-H., Wu, L., Zhu, Y., Grey, C.P., and Khalifah, P.G., Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: Honeycomb-ordered cathodes for Na-ion batteries, Chem. Mater., 2015, vol. 27, p. 2387.CrossRefGoogle Scholar
  415. 415.
    Kim, D., Lee, E., Slater, M., Lu, W., Rood, S., and Johnson, C.S., Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application, Electrochem. Commun., 2012, vol. 18, p. 66.CrossRefGoogle Scholar
  416. 416.
    Yabuuchi, N., Yano, M., Yoshida, H., Kuze, S., and Komaba, S., Synthesis and Electrode Performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 Solid Solution for Rechargeable Sodium Batteries, J. Electrochem. Soc., 2013, vol. 160, p. A3131.CrossRefGoogle Scholar
  417. 417.
    Yuan, D.D., Wang, Y.X., Cao, Yu.L., Ai, X.P., and Yang, H.X., Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 8585.CrossRefGoogle Scholar
  418. 418.
    Yuan, D., Hu, X., Qian, J., Pei, F., Wu, F., Mao, R., Ai, X., Yang, H., and Cao, Y., P2-type Na0.67Mn0.65Fe0.2Ni0.15O2 Cathode Material with High-capacity for Sodium-ion Battery, Electrochim. Acta, 2014, vol. 116, p. 300.CrossRefGoogle Scholar
  419. 419.
    Oh, S.-M., Myung, S.-T., Yoon, C.S., Lu, J., Hassoun, J., Scrosati, B., Amine, K., and Sun, Y.-K., Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodiumion batteries using EMS electrolyte for energy storage, Nano Letters, 2014, vol. 14, p. 1620.CrossRefGoogle Scholar
  420. 420.
    Sathiya, M., Hemalatha, K., Ramesha, K., Tarascon, J.-M., and Prakash, A.S., Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2, Chem. Mater., 2012, vol. 24, p. 1846.CrossRefGoogle Scholar
  421. 421.
    Li, Z.-Y., Gao, R., Sun, L., Hu, Z., and Liu, X., Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 16272.CrossRefGoogle Scholar
  422. 422.
    Buchholz, D., Moretti, A., Kloepsch, R., Nowak, S., Siozios, V., Winter, M., and Passerini, S., Toward Naion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material, Chem. Mater., 2013, vol. 25, p. 142.CrossRefGoogle Scholar
  423. 423.
    Doubaji, S., Philippe, B., Saadoune, I., Gorgoi, M., Gustafsson, T., Solhy, A., Valvo, M., and Edström, K., Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES, ChemSus- Chem., 2016, vol. 9, p. 97.CrossRefGoogle Scholar
  424. 424.
    Yuan, D., He, W., Pei, F., Wu, F., Wu, Y., Qian, J., Cao, Y., Ai, X., and Yang, H., Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 3895.CrossRefGoogle Scholar
  425. 425.
    Wu, X., Guo, J., Wang, D., Zhong, G., McDonald, M.J., and Yang, Y., P2-type Na0.66Ni0.33?xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries, J. Power Sources, 2015, vol. 281, p. 18.CrossRefGoogle Scholar
  426. 426.
    Vassilaras, P., Toumar, A.J., and Ceder, G., Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries, Electrochem. Commun., 2014, vol. 38, p. 79.CrossRefGoogle Scholar
  427. 427.
    Guo, H., Wang, Y., Han, W., Yu, Z., Qi, X., Sun, K., Hu, Y.-S., Liu, Y., Chen, D., and Chen, L., Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries, Electrochim. Acta, 2015, vol. 158, p. 258.CrossRefGoogle Scholar
  428. 428.
    Singh, G., Aguesse, F., Otaegui, L., Goikolea, E., Gonzalo, E., Segalini, J., and Rojo, T., Electrochemical performance of NaFex(Ni0.5Ti0.5)1 ? xO2 (x = 0.2 and x = 0.4) cathode for sodium-ion battery, J. Power Sources, 2015, vol. 273, p. 333.CrossRefGoogle Scholar
  429. 429.
    Li, X., Wu, D., Zhou, Y.-N., Liu, L., Yang, X.-Q., and Ceder, G., O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries, Electrochem. Commun., 2014, vol. 49, p. 51.CrossRefGoogle Scholar
  430. 430.
    Xu, J., Liu, H., and Meng, Y.S., Exploring Li substituted O3-structured layered oxides NaLixNi1/3 - xMn1/3 + xCo1/3 - xO2 (x = 0.07, 0.13, and 0.2) as promising cathode materials for rechargeable Na batteries, Electrochem. Commun., 2015, vol. 60, p. 13.CrossRefGoogle Scholar
  431. 431.
    Choi, M., Jo, I.-H., Lee, S.-H., Jung, Y-.I., Moon, J.-K., and Choi, W.-K., A facile synthesis and electrochemical performance of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 as cathode materials for Li and Na ion batteries, Current Applied Physics, 2016, vol. 16, p. 226.CrossRefGoogle Scholar
  432. 432.
    Kataoka, R., Mukai, T., Yoshizawa, A., and Sakai, T., Development of High Capacity Cathode Material for Sodium Ion Batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2, J. Electrochem. Soc., 2013, vol. 160, p. A933.CrossRefGoogle Scholar
  433. 433.
    Kim, D., Kang, S.-H., Slater, M., Rood, S., Vaughey, J.T., Karan, N., Balasubramanian, M., and Johnson, C.S., Enabling sodium batteries using lithium- substituted sodium layered transition metal oxide cathodes, Adv. Energy Mater., 2011, vol. 1, p. 333.CrossRefGoogle Scholar
  434. 434.
    Xu, J., Lee, D.H., Clément, R.J., Yu, X., Leskes, M., Pell, A.J., Pintacuda, G., Yang, X.-Q., Grey, C.P., and Meng, Y.S., Identifying the Critical Role of Li Substitution in P2–Nax[LiyNizMn1–y–z]O2 (0 < x, y, z < 1) Intercalation Cathode Materials for High- Energy Na-Ion Batteries, Chem. Mater., 2014, vol. 26, p. 1260.CrossRefGoogle Scholar
  435. 435.
    Liu, H., Xu, J., Ma, C., and Meng, Y.S., A new O3- type layered oxide cathode with high energy/power density for rechargeable Na batteries, Chem. Commun., 2015, vol. 51, p. 4693.CrossRefGoogle Scholar
  436. 436.
    Guo, S., Liu, P., Yu, H., Zhu, Y., Chen, M., Ishida, M., and Zhou, H., A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries, Angew. Chem., Intern. Ed., 2015, vol. 54, p. 5894.CrossRefGoogle Scholar
  437. 437.
    Park, K., Yu, B.-C., and Goodenough, J.B., Electrochemical and Chemical Properties of Na2NiO2 as a Cathode Additive for a Rechargeable Sodium Battery, Chem. Mater., 2015, vol. 27. p. 6682.CrossRefGoogle Scholar
  438. 438.
    Oh, S-M., Myung, S-T., Hassoun, J., Scrosati, B., and Sun, Y-K., Reversible NaFePO4 electrode for sodium secondary batteries, Electrochem. Commun., 2012, vol. 22, p. 149.CrossRefGoogle Scholar
  439. 439.
    Sun, A., Beck, F.R., Haynes, D., Poston, J.A., Jr., Narayanan, S.R., Kumta, P.N., and Manivannan, A., Synthesis, characterization, and electrochemical studies of chemically synthesized NaFePO4, Mater. Sci. Engineering B, 2012, vol. 177, p. 1729.CrossRefGoogle Scholar
  440. 440.
    Ong, S.P., Chevrier, V.L., Hautier, G., Jain, A., Moore, C., Kim, S., Ma, X., and Ceder, G., Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion 7intercalation materials, Energy Environ. Sci., 2011, vol. 4, p. 3680.CrossRefGoogle Scholar
  441. 441.
    Prosini, P.P., Cento, C., Masci, A., and Carewska, M., Sodium extraction from sodium iron phosphate with a Maricite structure, Solid State Ionics., 2014, vol. 263, p. 1.CrossRefGoogle Scholar
  442. 442.
    Kim, J., Seo, D., Kim, H., Park, I., Yoo, J.-K., Jung, S.-K., Park, Y.-U., Goddard Iii, W.A., and Kang, K., Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 540.CrossRefGoogle Scholar
  443. 443.
    Moreau, P., Guyomard, D., Gaubicher, J., and Boucher, F., Structure and stability of sodium intercalated phases in olivine FePO4, Chem. Mater., 2010, vol. 22, p. 4126.CrossRefGoogle Scholar
  444. 444.
    Trottier, J., Hovington, P., Brochu, F., Rodrigues, I., Zaghib, K., Mauger, A., and Julien, C.M., NaFePO4 olivine as electrode materials for electrochemical cells, ECS Trans., 2011, vol. 35, p. 123.CrossRefGoogle Scholar
  445. 445.
    Casas-Cabanas, M., Roddatis, V.V., Saurel, D., Kubiak, P., Carretero-González, J., Palomares, V., Serras, P., and Rojo, T., Crystal chemistry of Na insertion/ deinsertion in FePO4–NaFePO4, J. Mater. Chem., 2012, vol. 22, p. 17421.CrossRefGoogle Scholar
  446. 446.
    Zhu, Y., Xu, Y., Liu, Y., Luo, C., and Wang, C., Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries, Nanoscale, 2013, vol. 5, p. 780.CrossRefGoogle Scholar
  447. 447.
    Whiteside, A., Fisher, C.A.J., Parker, S.C., and Islam, M.S., Particle shapes and surface structures of olivine NaFePO4 in comparison to LiFePO4, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 21788.CrossRefGoogle Scholar
  448. 448.
    Kim, H.H., Yu, I.H., Kim, H.S., Koo, H.-J., and Whangbo, M.-H., On Why the Two Polymorphs of NaFePO4 Exhibit Widely Different Magnetic Structures: Density Functional Analysis, Inorg. Chem., 2015, vol. 54, p. 4966.CrossRefGoogle Scholar
  449. 449.
    Li, C., Miao, X., Chu, W., Wu, P., and Tong, D.G., Hollow amorphous NaFePO4 nanospheres as a highcapacity and high-rate cathode for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 8265.CrossRefGoogle Scholar
  450. 450.
    Fernández-Ropero, A.J., Saurel, D., Acebedo, B., Rojo, T., and Casas-Cabanas, M., Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries, J. Power Sources, 2015, vol. 291, p. 40.CrossRefGoogle Scholar
  451. 451.
    Nakayama, M., Yamada, S., Jalem, R., and Kasuga, T., Density functional studies of olivine-type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium ion batteries, Solid State Ionics, 2016, vol. 286, p. 40.CrossRefGoogle Scholar
  452. 452.
    Lee, K.T., Ramesh, T.N., Nan, F., Botton, G., and Nazar, L.F., Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries, Chem. Mater., 2011, vol. 23, p. 3593.CrossRefGoogle Scholar
  453. 453.
    Shiratsuchi, T., Okada, S., Yamaki, J., and Nishida, T., FePO4 cathode properties for Li and Na secondary cells, J. Power Sources, 2006, vol. 159, p. 268.CrossRefGoogle Scholar
  454. 454.
    Liu, Y., Xu, Y., Han, X., Pellegrinelli, C., Zhu, Y., Zhu, H., Wan, J., Chung, A.C., Vaaland, O., Wang, C., and Hu, L., Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes, Nano Letters, 2012, vol. 12, p. 5664.CrossRefGoogle Scholar
  455. 455.
    Fang, Y., Xiao, L., Qian, J., Ai, X., Yang, H., and Cao, Y., Mesoporous amorphous FePO4 nanospheres as high-performance cathode material for sodium-ion batteries, Nano Letters, 2014, vol. 14, p. 3539.CrossRefGoogle Scholar
  456. 456.
    Xu, S., Zhang, S., Zhang, J., Tan, T., and Liu, Y., A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique, J. Mater. Chem. A, 2014, vol. 2, p. 7221.CrossRefGoogle Scholar
  457. 457.
    Wang, W., Wang, S., Jiao, H., Zhan, P., and Jiao, S., A sodium ion intercalation material: A comparative study of amorphous and crystalline FePO4, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 4551.CrossRefGoogle Scholar
  458. 458.
    Barpanda, P., Ye, T., Nishimura, S., Chung, S.C., Yamada, Y., Okubo, M., Zhou, H.S., and Yamada, A., Sodium iron pyrophosphate: A novel 3.0 V ironbased cathode for sodium-ion batteries, Electrochem. Commun., 2012, vol. 24, p. 116.CrossRefGoogle Scholar
  459. 459.
    Barpanda, P., Liu, G., Ling, C.D., Tamaru, M., Avdeev, M., Chung, S.C., Yamada, Y., and Yamada, A., Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries, Chem. Mater., 2013, vol. 25, p. 3480.CrossRefGoogle Scholar
  460. 460.
    Kim, H., Shakoor, R.A., Park, C., Lim, S.Y., Kim, J.-S., Jo, Y.N., Cho, W., Miyasaka, K., Kahraman, R., Jung, Y., and Choi, J.W., Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: A combined experimental and theoretical study, Adv. Funct. Mater., 2013, vol. 23, p. 1147.CrossRefGoogle Scholar
  461. 461.
    Chen, C-Y., Matsumoto, K., Nohira, T., Hagiwara, R., Orikasa, Y., and Uchimoto, Y., Pyrophosphate Na2FeP2O7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid, J. Power Sources, 2014, vol. 246, p. 783.CrossRefGoogle Scholar
  462. 462.
    Chen, C-Y., Matsumoto, K., Nohira, T., Ding, C., Yamamoto, T., and Hagiwara, R., Charge–discharge behavior of a Na2FeP2O7 positive electrode in anionic liquid electrolyte between 253 and 363 K, Electrochim. Acta, 2014, vol. 133, p 583.CrossRefGoogle Scholar
  463. 463.
    Longoni, G., Wang, J.E., Jung, Y.H., Kim, D.K., Mari, C.M., and Ruffo, R., The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries, J. Power Sources, 2016, vol. 302, p. 61.CrossRefGoogle Scholar
  464. 464.
    Honma, T., Ito, N., Togashi, T., Sato, A., and Komatsu, T., Triclinic Na2?xFe1+x/2P2O7/C glass-ceramics with high current density performance for sodium ion battery, J. Power Sources, 2013, vol. 227, p. 31.CrossRefGoogle Scholar
  465. 465.
    Barpanda, P., Ye, T., Avdeev, M., Chung, S.-C., and Yamada, A., A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 4194.CrossRefGoogle Scholar
  466. 466.
    Hautier, G., Jain, A., Chen, H., Moore, C., Ong, S.P., and Ceder, G., Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations, J. Mater. Chem., 2011, vol. 21, p. 17147.CrossRefGoogle Scholar
  467. 467.
    Chen, H., Zivkovic, Q.O.H., Hautier, G., Du, L-S., Tang, Y., Hu, Y-Y., Ma, X., Grey, C.P., and Ceder, G., Sidorenkite (Na3MnPO4CO3): A New Intercalation Cathode Material for Na-Ion Batteries, Chem. Mater., 2013, vol. 25, p. 2777.CrossRefGoogle Scholar
  468. 468.
    Wang, C., Sawicki, M., Emani, S., Liu, C., and Shaw, L.L., Na3MnCO3PO4—A High Capacity, Multi-Electron Transfer Redox Cathode Material for Sodium Ion Batteries, Electrochim. Acta, 2015, vol. 161, p. 322.CrossRefGoogle Scholar
  469. 469.
    Nose, M., Nakayama, H., Nobuhara, K., Yamaguchi, H., Nakanishi, S., and Iba, H., Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries, J. Power Sources, 2013, vol. 234, p. 175.CrossRefGoogle Scholar
  470. 470.
    Vujkovic, M., Mitric, M., and Mentus, S., High-rate intercalation capability of NaTi2(PO4)3/C composite in aqueous lithium and sodium nitrate solutions, J. Power Sources, 2015, vol. 288, p. 176.CrossRefGoogle Scholar
  471. 471.
    Difi, S., Saadoune, I., Sougrati, M.T., Hakkou, R., Edstrom, K., and Lippens, P.-E., Mechanisms and Performances of Na1.5Fe0.5Ti1.5(PO4)3/C Composite as Electrode Material for Na-Ion Batteries, J. Phys. Chem. C, 2015, vol 119, p. 25220.CrossRefGoogle Scholar
  472. 472.
    Kim, H., Park, I., Lee, S., Kim, H., Park, K.-Y., Park, Y.-U., Kim, H., Kim, J., Lim, H.-D., Yoon, W.-S., and Kang, K., Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery, Chem. Mater., 2013, vol. 25, p. 3614.CrossRefGoogle Scholar
  473. 473.
    Niu, Y., Xu, M., Bao, S.-J., and Li, C.M., Porous graphene to encapsulate Na6.24Fe4.88(P2O7)4 as com posite cathode materials for Na-ion batteries, Chem. Commun., 2015, vol. 51, p. 13120.CrossRefGoogle Scholar
  474. 474.
    Plashnitsa, L.S., Kobayashi, E., Noguchi, Y., Okada, S., and Yamaki, J.-i., Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte, J. Electrochem. Soc., 2010, vol. 157, p. A536.CrossRefGoogle Scholar
  475. 475.
    Du, K., Guo, H., Hu, G., Peng, Z., and Cao, Y., Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries, J. Power Sources, 2013, vol. 223, p. 284.CrossRefGoogle Scholar
  476. 476.
    Jian, Z., Han, W., Lu, X., Yang, H., Hu, Y-S., Zhou, J., Zhou, Z., Li, J., Chen, W., Chen, D., and Chen, L., Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 156.CrossRefGoogle Scholar
  477. 477.
    Shen, W., Wang, C., Liu, H., and Yang, W., Towards Highly Stable Storage of Sodium Ions: A Porous Na3V2(PO4)3/C Cathode Material for Sodium-Ion Batteries, Chemistry—A European J., 2013, vol. 19, p. 14712.CrossRefGoogle Scholar
  478. 478.
    Jung, Y.H., Lim, C.H., and Kim, D.K., Graphenesupported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries, J. Mater. Chem. A, 2013, vol. 1, p. 11350.CrossRefGoogle Scholar
  479. 479.
    Saravanan, K., Mason, C.W., Rudola, A., Wong, K.H., and Balaya, P., The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Adv. Energy Mater., 2013, vol. 3, p. 444.CrossRefGoogle Scholar
  480. 480.
    Liu, J., Tang, K., Song, K., Van Aken, P.A., Yu, Y., and Maier, J., Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries, Nanoscale, 2014, vol. 6, p. 5081.CrossRefGoogle Scholar
  481. 481.
    Song, W., Wu, Z., Chen, J., Lan, Q., Zhu, Y., Yang, Y., Pan, C., Hou, H., Jing, M., and Ji, X., High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion, Electrochim. Acta, 2014, vol. 146, p. 142.CrossRefGoogle Scholar
  482. 482.
    Zhu, C., Song, K., Van Aken, P.A., Maier, J., and Yu, Y., Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes, Nano Letters, 2014, vol. 14, p. 2175.CrossRefGoogle Scholar
  483. 483.
    Wang, H., Jiang, D., Zhang, Y., Li, G., Lan, X., Zhong, H., Zhang, Z., and Jiang, Y., Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries, Electrochim. Acta, 2015, vol. 155, p. 23.CrossRefGoogle Scholar
  484. 484.
    Yang, J., Han, D.-W., Jo, M.R., Song, K., Kim, Y.-I., Chou, S.-L., Liu, H.-K., and Kang, Y.-M., Na3V2(PO4)3 particles partly embedded in carbon nanofibers with superb kinetics for ultra-high power sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, p. 1005.CrossRefGoogle Scholar
  485. 485.
    Rui, X., Sun, W., Wu, C., Yu, Y., and Yan, Q., An Advanced Sodium-Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network, Adv. Mater., 2015, vol. 27, p. 6670.CrossRefGoogle Scholar
  486. 486.
    Kang, J., Baek, S., Mathew, V., Gim, J., Song, J., Park, H., Chae, E., Rai, A.K., and Kim, J., High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries, J. Mater. Chem., 2012, vol. 22, p. 20857.CrossRefGoogle Scholar
  487. 487.
    Fang, Y., Xiao, L., Ai, X., Cao, Y., and Yang, H., Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries, Adv. Mater., 2015, vol. 27, p. 5895.CrossRefGoogle Scholar
  488. 488.
    Duan, W., Zhu, Z., Li, H., Hu, Z., Zhang, K., Cheng, F., and Chen, J., Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 8668.CrossRefGoogle Scholar
  489. 489.
    Barker, J., Saidi, M.Y., and Swoyer, J.L., A Sodium- Ion Cell Based on the Fluorophosphate Compound NaVPO4F, Electrochem. Solid-State Lett., 2003, vol. 6, p. A1.CrossRefGoogle Scholar
  490. 490.
    Barker, J., Saidi, M.Y., and Swoyer, J.L., A Comparative Investigation of the Li Insertion Properties of the Novel Fluorophosphate Phases, NaVPO4F and LiVPO4F, J. Electrochem. Soc., 2004, vol. 151, p. A1670.CrossRefGoogle Scholar
  491. 491.
    Zhuo, H., Wang, X., Tang, A., Liu, Z., Gamboa, S., and Sebastian, P.J., The preparation of NaV1 - xCrxPO4F cathode materials for sodium-ion battery, J. Power Sources, 2006, vol. 160, p. 698.CrossRefGoogle Scholar
  492. 492.
    Lu, Y., Zhang, S., Li, Y., Xue, L., Xu, G., and Zhang, X., Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries, J. Power Sources, 2014, vol. 247, p. 770.CrossRefGoogle Scholar
  493. 493.
    Ruan, Y-L., Wang, K., Song, S-D., Han, X., and Cheng, B-W., Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries, Electrochim. Acta, 2015, vol. 160, p. 330.CrossRefGoogle Scholar
  494. 494.
    Zhao, J., He, J., Ding, X., Zhou, J., Ma, Y., Wu, S., and Huang, R., A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries, J. Power Sources, 2010, vol. 195, p. 6854.CrossRefGoogle Scholar
  495. 495.
    Barker, J., Gover, R.K.B., Burns, P., and Bryan, A.J., Hybrid-Ion. A Lithium-Ion Cell Based on a Sodium Insertion Material, Electrochem. Solid-State Lett., 2006, vol. 9, p. A190.CrossRefGoogle Scholar
  496. 496.
    Barker, J., Gover, R.K.B., Burns, P., and Bryan, A.J., Li4/3Ti5/3O4||Na3V2(PO4)2F3: An Example of a Hybrid-Ion Cell Using a Non-graphitic Anode, J. Electrochem. Soc., 2007, vol. 154, p. A882.CrossRefGoogle Scholar
  497. 497.
    Ellis, B.L., Makahnouk, W.R.M., Makimura, Y., Toghill, K., and Nazar, L.F., A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries, Nature Materials, 2007, vol. 6, p. 749.CrossRefGoogle Scholar
  498. 498.
    Recham, N., Chotard, J.-N., Dupont, L., Djellab, K., Armand, M., and Tarascon, J.-M., Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials, J. Electrochem. Soc., 2009, vol. 156, p. A993.CrossRefGoogle Scholar
  499. 499.
    Ellis, B.L., Michael Makahnouk, W.R., Rowan-Weetaluktuk, W.N., Ryan, D.H., and Nazar, L.F., Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A=Na, Li; M=Fe, Mn, Co, Ni), Chem Mater., 2010, vol. 22, p. 1059.CrossRefGoogle Scholar
  500. 500.
    Kawabe, Y., Yabuuchi, N., Kajiyama, M., Fukuhara, N., Inamasu, T., Okuyama, R., Nakai, I., and Komaba, S., Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries, Electrochem. Commun., 2011, vol. 13, p. 1225.CrossRefGoogle Scholar
  501. 501.
    Kawabe, Y., Yabuuchi, N., Kajiyama, M., Fukuhara, N., Inamasu, T., Okuyama, R., Nakai, I., and Komaba, S., A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion Batteries, Electrochemistry, 2012, vol. 80, p. 80.CrossRefGoogle Scholar
  502. 502.
    Tripathi, R., Wood, S.M., Islam, M.S., and Nazar, L.F., Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4, Energy Environ. Sci., 2013, vol. 6, p. 2257.CrossRefGoogle Scholar
  503. 503.
    Yan, J., Liu, X., and Li, B., Nano-assembled Na2FePO4F/ carbon nanotubemulti-layered cathodes for Na-ion batteries, Electrochem. Commun., 2015, vol. 56, p. 46.CrossRefGoogle Scholar
  504. 504.
    Vidal-Abarca, C., Lavela, P., Tirado, J.L., Chadwick, A.V., Alfredsson, M., and Kelder, E., Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent, J. Power Sources, 2012, vol. 197, p. 314.CrossRefGoogle Scholar
  505. 505.
    Gover, R.K.B., Bryan, A., Burns, P., and Barker, J., The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3, Solid State Ionics, 2006, vol. 177, p. 1495.CrossRefGoogle Scholar
  506. 506.
    Jiang, T., Chen, G., Li, A., Wang, C., and Wei, Y., Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries, J. Alloys and Comp., 2009, vol. 478, p. 604.CrossRefGoogle Scholar
  507. 507.
    Shakoor, R.A., Seo, D-H., Kim, H., Park, Y-U., Kim, J., Kim, S-W, Gwon, H., Lee, S., and Kang, K., A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries, J. Mater. Chem., 2012, vol. 22, p. 20535.CrossRefGoogle Scholar
  508. 508.
    Chihara, K., Kitajou, A., Gocheva, I.D., Okada, S., and Yamaki, J-i., Cathode properties of Na3M2(PO4)2F3 [M = Ti, Fe, V] for sodium-ion batteries, J. Power Sources, 2013, vol. 227, p. 80.CrossRefGoogle Scholar
  509. 509.
    Matts, I.L., Dacek, S., Pietrzak, T.K., Malik, R., and Ceder, G., Explaining Performance-Limiting Mechanisms in Fluorophosphate Na-Ion Battery Cathodes through Inactive Transition-Metal Mixing and First- Principles Mobility Calculations, Chem. Mater., 2015, vol. 27, p. 6008.CrossRefGoogle Scholar
  510. 510.
    Serras, P., Palomares, V., Goñi, A., Kubiak, P., and Rojo, T., Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3 ? 2x/C as cathode for sodium-ion batteries, J. Power Sources, 2013, vol. 241, p. 56.CrossRefGoogle Scholar
  511. 511.
    Sauvage, F., Quarez, E., Tarascon, J.-M., and Baudrin, E., Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5, Solid State Sci., 2001, vol. 8, p. 1215.CrossRefGoogle Scholar
  512. 512.
    Park, Y.-U., Seo, D.-H., Kwon, H.-S., Kim, B., Kim, J., Kim, H., Kim, I., Yoo, H.-I., and Kang, K., A new high-energy cathode for a Na-ion battery with ultrahigh stability, J. Amer. Chem. Soc., 2013, vol. 135, p. 13870.CrossRefGoogle Scholar
  513. 513.
    Serras, P., Palomares, V., Kubiak, P., Lezama, L., and Rojo, T., Enhanced electrochemical performance of vanadyl (IV) Na3(VO)2(PO4)2F by ex-situ carbon coating, Electrochem. Commun., 2013, vol. 34, p. 344.CrossRefGoogle Scholar
  514. 514.
    Park, Y.-U., Seo, D.-H., Kim, H., Kim, J., Lee, S., Kim, B., and Kang, K., A family of high-performance cathode materials for Na-ion batteries, Na(VO1–xPO4)2F1 + 2x (0 = x = 1): Combined firstprinciples and experimental study, Adv. Func. Mater., 2014, vol. 24, p. 4603.CrossRefGoogle Scholar
  515. 515.
    Yaghoobnejad Asl, H., Stanley, P., Ghosh, K., and Choudhury, A., Iron Borophosphate as a Potential Cathode for Lithium- and Sodium-Ion Batteries, Chem. Mater., 2015, vol. 27, p. 7058.CrossRefGoogle Scholar
  516. 516.
    Singh, P., Shiva, K., Celio, H., and Goodenough, J.B., Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries, Energy and Environmental Sci., 2015, vol. 8, p. 3000.CrossRefGoogle Scholar
  517. 517.
    Uchaker, E., Zheng, Y.Z., Li, S., Candelaria, S.L., Hu, S., and Cao, G.Z., Better than crystalline: Amorphous vanadium oxide for sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 18208.CrossRefGoogle Scholar
  518. 518.
    Su, D.W., Dou, S.X., and Wang, G.X., Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries, J. Mater. Chem. A, 2014, vol. 2, p. 11185.CrossRefGoogle Scholar
  519. 519.
    Su, D., Dou, S., and Wang, G., Hierarchical Vanadium Pentoxide Spheres as High-Performance Anode Materials for Sodium-Ion Batteries, ChemSusChem., 2015, vol. 8, p. 2877.CrossRefGoogle Scholar
  520. 520.
    Li, H.-Y., Yang, C.-H., Tseng, C.-M., Lee, S.-W., Yang, C.-C., Wu, T.-Y., and Chang, J.-K., Electrochemically grown nanocrystalline V2O5 as high-performance cathode for sodium-ion batteries, J. Power Sources, 2015, vol. 285, p. 418.CrossRefGoogle Scholar
  521. 521.
    Kim, H., Kim, R-H., Lee, S-S., Kim, Y., Kim, D.Y., and Park, K., Effects of Ni Doping on the Initial Electrochemical Performance of Vanadium Oxide Nanotubes for Na-Ion Batteries, ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 11692.CrossRefGoogle Scholar
  522. 522.
    Shao, J., Ding, Y., Li, X., Wan, Z., Wu, C., Yang, J., Qu, Q., and Zheng, H., Low crystallinity VOOH hollow microspheres as an outstanding high-rate and long-life cathode for sodium ion batteries, J. Mater. Chem. A., 2013, vol. 1, p. 12404.CrossRefGoogle Scholar
  523. 523.
    Venkatesh, G., Pralong, V., Lebedev, O.I., Caignaert, V., Bazin, P., and Raveau, B., Amorphous sodium vanadate Na1.5 + yVO3, a promising matrix for reversible sodium intercalation, Electrochem. Commun., 2014, vol. 40, p. 100.CrossRefGoogle Scholar
  524. 524.
    Liu, H., Zhou, H., Chen, L., Tang, Z., and Yang, W., Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteries, J. Power Sources, 2011, vol. 196, p. 814.CrossRefGoogle Scholar
  525. 525.
    Arai, H., Okada, S., Sakurai, Y., and Honma, J.-i., Cathode performance and voltage estimation of metal trihalides, J. Power Sources, 1997, vol. 68, p. 716.CrossRefGoogle Scholar
  526. 526.
    Gocheva, I.D., Nishijima, M., Doi, T., Okada, S., Yamaki, J.-i., and Nishida, T., Mechanochemical synthesis of NaMF3 (M=Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries, J. Power Sources, 2009, vol. 187, p. 247.CrossRefGoogle Scholar
  527. 527.
    Nishijima, M., Gocheva, I.D., Okada, S., Doi, T., Yamaki, J-i., and Nishida, T., Cathode properties of metal trifluorides in Li and Na secondary batteries, J. Power Sources, 2009, vol. 190, p. 558.CrossRefGoogle Scholar
  528. 528.
    Yamada, Y., Doi, T., Tanaka, I., Okada, S., and Yamaki, J.-i., Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries, J. Power Sources, 2011, vol. 196, p. 4837.CrossRefGoogle Scholar
  529. 529.
    Kitajou, A., Komatsu, H., Chihara, K., Gocheva, I.D., Okada, S., and Yamaki, J-i., Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery, J. Power Sources, 2012, vol. 198, p. 389.CrossRefGoogle Scholar
  530. 530.
    Li, C., Yin, C., Gu, L., Dinnebier, R.E., Mu, X., van Aken, P.A., and Maier, J., An FeF3 · 0.5H2O polytype: A microporous framework compound with intersecting tunnels for li and na batteries, J. Amer. Chem. Soc., 2013, vol. 135, p. 11425.CrossRefGoogle Scholar
  531. 531.
    Ma, D-l., Wang, H-g., Li, Y., Xu, D., Yuan, S., Huang, X.-l., Zhang, X.-b., and Zhang, Y., In situ generated FeF3 in homogeneous iron matrix toward high-performance cathode material for sodium-ion batteries, Nano Energy, 2014, vol. 10, p. 295.CrossRefGoogle Scholar
  532. 532.
    Lee, L., Sahgong, S., Johnson, C.S., and Kim, Y., Comparative electrochemical sodium insertion/ extraction behavior inlayered NaxVS2 and NaxTiS2, Electrochim. Acta, 2014, vol. 143, p. 272.CrossRefGoogle Scholar
  533. 533.
    Chen, G-Y., Sun, Q., Yue, J-L., Shadike, Z., Yang, Y., Ding, F., Sang, L., and Fu, Z-W., Conversion and displacement reaction types of transition metal compounds for sodium ion battery, J. Power Sources, 2015, vol. 284, p. 115.CrossRefGoogle Scholar
  534. 534.
    Qian, J., Zhou, M., Cao, Y., Ai, X., and Yang, H., Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries, Adv. Ener. Mat., 2012, vol. 2, p. 410.CrossRefGoogle Scholar
  535. 535.
    Zhou, M., Zhu, L., Cao, Y., Zhao, R., Qian, J., Ai, X., and Yang, H., Fe(CN)6-4-doped polypyrrole: a highcapacity and high-rate cathode material for sodiumion batteries, RSC Adv., 2012, vol. 2, p. 5495.CrossRefGoogle Scholar
  536. 536.
    Lee, H., Kim, Y-I., Park, J-K., and Choi, J.W., Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries, Chem. Commun., 2012, vol. 48, p. 8416.CrossRefGoogle Scholar
  537. 537.
    Lu, Y., Wang, L., Cheng, J., and Goodenough, J.B., Prussian blue: a new framework of electrode materials for sodium batteries, Chem. Commun., 2012, vol. 48, p. 6544.CrossRefGoogle Scholar
  538. 538.
    Matsuda, T., Takachia, M., and Moritomo, Y., A sodium manganese ferrocyanide thin film for Naion batteries, Chem. Commun., 2013, vol. 49, p. 2750.CrossRefGoogle Scholar
  539. 539.
    Wang, L., Lu, Y., Liu, J., Xu, M., Cheng, J., Zhang, D., and Goodenough, J.B., A superior low-cost cathode for a Na-Ion battery, Angew. Chem., Intern. Ed., 2013, vol. 52, p. 1964.CrossRefGoogle Scholar
  540. 540.
    Lee, H-W., Wang, R.Y., Pasta, M., Lee, S.W., Liu, N., and Cui, Y., Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries, Nature Commun., 2014, vol. 5, art. no. 5280.CrossRefGoogle Scholar
  541. 541.
    You, Y., Wu, X-L., Yin, Y-X., and Guo, Y-G., Highquality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries, Energy Environ. Sci., 2014, vol. 7, p. 1643.CrossRefGoogle Scholar
  542. 542.
    Dai, Y., Zhang, Y., Gao, L., Xu, G., and Xie, J., A Sodium Ion Based Organic Radical Battery, Electrochem. Solid-State Lett., 2010, vol. 13, p. A22.CrossRefGoogle Scholar
  543. 543.
    Zhao, R., Zhu, L., Cao, Y., Ai, X., and Yang, H.X., An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries, Electrochem. Commun., 2012, vol. 21, p. 36.CrossRefGoogle Scholar
  544. 544.
    Chihara, K., Chujo, N., Kitajou, A., and Okada, S., Cathode properties of Na2C6O6 for sodium-ion batteries, Electrochim. Acta, 2013, vol. 110, p. 240.CrossRefGoogle Scholar
  545. 545.
    Shen, Y.F., Yuan, D.D., Ai, X.P., Yang, H.X., and Zhou, M., Poly(diphenylaminesulfonic acid sodium) as a cation-exchanging organic cathode for sodium batteries, Electrochem. Commun., 2014, vol. 49, p. 5.CrossRefGoogle Scholar
  546. 546.
    Deng, W., Shen, Y., Qian, J, Cao, Y., and Yang, H., A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 21095.CrossRefGoogle Scholar
  547. 547.
    Guo, C., Zhang, K., Zhao, Q., Pei, L., and Chen, J., High-performance sodium batteries with the 9,10- anthraquinone/CMK-3 cathode and an ether-based electrolyte, Chem. Commun., 2015, vol. 51, p. 10244.CrossRefGoogle Scholar
  548. 548.
    Wang, H.-G., Yuan, S., Ma, D.-L., Huang, X.-L., Meng, F.-L., and Zhang, X-B., Tailored aromatic carbonyl derivative polyimides for high-power and longcycle sodium-organic batteries, Adv. Energy Mater., 2014, vol. 4, Article number 1301651CrossRefGoogle Scholar
  549. 549.
    Zhu, L., Shen, Y., Sun, M., Qian, J., Cao, Y., Ai, X., and Yang, H., Self-doped polypyrrole with ionizable sodium sulfonate as a renewable cathode material for sodium ion batteries, Chem. Commun., 2013, vol. 49, p. 11370.CrossRefGoogle Scholar
  550. 550.
    Deng, W.W., Liang, X.M., Wu, X.Y., Qian, J.F., Cao, Y.L., Ai, X.P., Feng, J.W., and Yang, H.X., A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode, Sci. Rep., 2013, vol. 3, article number 2671.CrossRefPubMedCentralGoogle Scholar
  551. 551.
    Ponrouch, A., Dedryvère, R., Monti, D., Demet, A.E., Ateba Mba, J.M., Croguennec, L., Masquelier, C., Johansson, P., and Palacín, M.R., Towards high energy density sodium ion batteries through electrolyte optimization, Energy and Environmental Sci., 2013, vol. 6, p. 2361.CrossRefGoogle Scholar
  552. 552.
    Sawicki, M. and Shaw, L.L., Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Adv., 2015, vol. 5, p. 53129.CrossRefGoogle Scholar
  553. 553.
    Vignarooban, K., Kushagra, R., Elango, A., Badami, P., Mellander, B-E., Xu, X., Tucker, T.G., Nam, C., and Kannan, A.M., Current trends and future challenges of electrolytes for sodium-ion batteries, Int. J. Hydrogen Energy, 2016, vol. 41, p. 2829.CrossRefGoogle Scholar
  554. 554.
    Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M., and Palacín, M.R., In search of an optimized electrolyte for Na-ion batteries, Energy and Environmental Science, 2012, vol. 5, p. 8572.CrossRefGoogle Scholar
  555. 555.
    Yoon, D., Kim, D.H., Chung, K.Y., Chang, W., Kim, S.M., and Kim, J., Hydrogen-enriched porous carbon nanosheets with high sodium storage capacity, Carbon, 2016, vol. 98, p. 213.CrossRefGoogle Scholar
  556. 556.
    Dahbi, M., Nakano, T., Yabuuchi, N., Ishikawa, T., Kubota, K., Fukunishi, M., Shibahara, S., Son, J.-Y., Cui, Y.-T., Oji, H., and Komaba, S., Sodium carboxymethyl cellulose as a potential binder for hardcarbon negative electrodes in sodium-ion batteries, Electrochem. Commun., 2014, vol. 44, p. 66.CrossRefGoogle Scholar
  557. 557.
    Ding, C., Nohira, T., Kuroda, K., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range, J Power Sources, 2013, vol. 238, p. 296.CrossRefGoogle Scholar
  558. 558.
    Ding, C., Nohira, T, Hagiwara, R., Matsumoto, K., Okamoto, Y., Fukunaga, A., Sakai, S., Nitta, K., and Inazawa, S., Na[FSA]-[C3C1pyr][FSA] ionic liquids as electrolytes for sodium secondary batteries: Effects of Na ion concentration and operation temperature, J. Power Sources, 2014, vol. 269, p. 124.CrossRefGoogle Scholar
  559. 559.
    Monti, D., Jónsson, E., Palacín, M.R., and Johansson, P., Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity, J. Power Sources, 2014, vol. 245, p. 630.CrossRefGoogle Scholar
  560. 560.
    Wongittharom, N., Wang, C., Wang, Y., Yang, C., and Chang, J., Ionic Liquid Electrolytes with Various Sodium Solutes for Rechargeable Na/NaFePO4 Batteries Operated at Elevated Temperatures, Appl Mater. Interfaces, 2014, vol. 6, p. 17564.CrossRefGoogle Scholar
  561. 561.
    Wongittharom, N., Lee, T.-C., Wang, C.-H., Wang, Y.-C., and Chang, J.-K., Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes, J. Mater. Chem. A, 2014, vol. 2, p. 5655.CrossRefGoogle Scholar
  562. 562.
    Wang, C.-H., Yeh, Y.-W., Wongittharom, N., Wang, Y.-C., Tseng, C.-J., Lee, S.-W., Chang, W.-S., and Chang, J.-K., Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes, J. Power Sources, 2015, vol. 274, p. 1016.CrossRefGoogle Scholar
  563. 563.
    Matsumoto, K., Tanikia, R., Nohira, T., and Hagiwara, R., Inorganic–Organic Hybrid Ionic Liquid Electrolytes for Na Secondary Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A1409.CrossRefGoogle Scholar
  564. 564.
    Ding, C., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., and Nitta, K., Electrochemical performance of hard carbon negative electrodes for ionic liquidbased sodium ion batteries over a wide temperature range, Electrochim. Acta, 2015, vol. 176, p. 344CrossRefGoogle Scholar
  565. 565.
    Noor, S.A.M., Yoon, H., Forsyth, M., and MacFarlane, D.R., Gelled ionic liquid sodium ion conductors for sodium batteries, Electrochim. Acta, 2015, vol. 169, p. 376.CrossRefGoogle Scholar
  566. 566.
    Hasa, I., Passerini, S., and Hassoun, J., Characteristics of an ionic liquid electrolyte for sodium-ion batteries, J. Power Sources, 2016, vol. 303, p. 203CrossRefGoogle Scholar
  567. 567.
    Hashmi, S. and Chandra, S., Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly(ethylene oxide) complexed with NaPF6, Material Sci. Eng., 1995, vol. B34, p. 18.CrossRefGoogle Scholar
  568. 568.
    Thakur, A.K., Upadhyaya, H.M., Hashmi, S.A., and Verma, A.L., Polyethylene oxide based sodium ion conducting composite polymer electrolytes dispersed with Na2SiO3, Indian J. Pure Appl. Phys., 1999, vol. 37, p. 302.Google Scholar
  569. 569.
    Bhargav, P.B., Mohan, V.M., Sharma, A.K., and Rao, V.V.R.N., Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications, Ionics, 2007, vol. 13, p. 44.Google Scholar
  570. 570.
    Osman, Z., Isa, K.B.M., Ahmad, A., and Othman, L., A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes, Ionics, 2010, vol. 16, p. 431.CrossRefGoogle Scholar
  571. 571.
    Chandra, A., Chandra, A., and Thakur, K., Na+ ion conducting hot-pressed nano composite polymer electrolytes, Port. Electrochim. Acta, 2012, vol. 30, p. 81.CrossRefGoogle Scholar
  572. 572.
    Cao, C., Wang, H., Liu, W., Liao, X., and Li, L., Nafion membranes as electrolyte and separator for sodium-ion battery, Int. J. Hydrogen Energy, 2014, vol. 39, p. 16110.CrossRefGoogle Scholar
  573. 573.
    Boschin, A. and Johansson, P., Characterization of NaX (X: TFSI, FSI)—PEO based solid polymer electrolytes for sodium batteries, Electrochim. Acta, 2015, vol. 175, p. 124.CrossRefGoogle Scholar
  574. 574.
    Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), vol. 2. St. Petersburg State Univ, 2010.Google Scholar
  575. 575.
    Evstigneeva, M.A., Nalbandyan, V.B., Petrenko, A.A., Medvedev, B.S., and Kataev, A.A., A new family of fast sodium ion conductors: Na2M2TeO6 (M=Ni, Co, Zn, Mg), Chem. Mater., 2011, vol. 23, p. 1174.CrossRefGoogle Scholar
  576. 576.
    Smaha, R.W., Roudebush, J.H., Herb, J.T., Seibel, E.M., Krizan, J.W., Fox, G.M., Huang, Q., Arnold, C.B., and Cava, R.J., Tuning Sodium Ion Conductivity in the Layered Honeycomb Oxide Na3 ? xSn2–xSbxNaO6, Inorg. Chem., 2015, vol. 54, p. 7985.CrossRefGoogle Scholar
  577. 577.
    Hibi, Y., Tanibata, N., Hayashi, A., and Tasumisago, M., Preparation of sodium ion conducting Na3PS4–NaI glasses by a mechanochemical technique, Solid State Ionics, 2015, vol. 270, p. 6.CrossRefGoogle Scholar
  578. 578.
    Peet, J.R., Widdifield, C.M., Apperley, D.C., Hodgkinson, P., Johnson, M.R., and Radosavljevic Evans, I., Na+ mobility in sodium strontium silicate fast ion conductors, Chem. Commun., 2015, vol. 51, p. 17163.CrossRefGoogle Scholar
  579. 579.
    Hayashi, A., Noi, K., Tanibata, N., Nagao, M., and Tatsumisago, M., High sodium ion conductivity of glass–ceramic electrolytes with cubic Na3PS4, J. Power Sources, 2014, vol. 258, p. 420.CrossRefGoogle Scholar
  580. 580.
    Onchi, T., A material design on new sodium ion conductor for sodium–sulfur battery. I. NaAlO(CN)2 and NaxAl1–x/3(CN)3 perovskite, Quantum Chem., 2012, vol. 112, p. 3777.CrossRefGoogle Scholar
  581. 581.
    Kim, J.-K., Lim, Y.J., Kim, H., Cho, G.-B., and Kim, Y., A hybrid solid electrolyte for flexible solidstate sodium batteries, Energy Environ. Sci., 2015, vol. 8, p. 3589.CrossRefGoogle Scholar
  582. 582.
    Kim, Y., Kim, H., Park, S., Seo, I., and Kim, Y., Na ion Conducting Ceramic as Solid Electrolyte for Rechargeable Seawater Batteries, Electrochim. Acta, 2016, vol. 191, p. 1.CrossRefGoogle Scholar
  583. 583.
    Oh, S-M., Myung, S-T., Jang, M-W., Scrosati, B., Hassoun, J., and Sun, Y-K., An advanced sodium-ion rechargeable battery based on a tin–carbon anode and a layered oxide framework cathode, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 3827.CrossRefGoogle Scholar
  584. 584.
    Zhang, J., Yin, Y.-X., and Guo, Y.-G., High-Capacity Te Anode Confined in Microporous Carbon for Long- Life Na-Ion Batteries, ACS Applied Materials and Interfaces, 2015, vol. 7, p. 27838.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. M. Skundin
    • 1
  • T. L. Kulova
    • 1
  • A. B. Yaroslavtsev
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations