Advertisement

Russian Journal of Electrochemistry

, Volume 54, Issue 2, pp 153–169 | Cite as

High Temperature Stability of Hydrated Ion Pairs Na+Cl(H2O) N under Conditions of a Flat Nanopore

  • S. V. Shevkunov
Article
  • 22 Downloads

Abstract

The high-temperature stability of hydrated ion pairs under conditions of a nanoscopic flat pore with hydrophobic structureless walls is studied by computer simulations. The limited space of the nanopore stimulates dissociation of the contact ion pair (CIP) with its transition to the state of the solvent-separated ion pair (SSIP); moreover, the ion pair demonstrates a high degree of stability on heating. The inverse temperature effect where the heating renders a moderate consolidating effect on the state of a hydrated contact ion pair is observed: when heated to the electrolyte boiling point, the free energy barrier that separates the CIP and SSIP states shifts by 2 molecules towards the larger hydration shells. On the pressure scale, the boundary between CIP and SSIP states shifts at the same rate as the saturating pressure with the increase in the temperature.

Keywords

ion pair hydration nanoelectrolyte computer simulation free energy entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., and Mayes, A.M., Science and technology for water purification in the coming decades, Nature, 2008, vol. 452, p. 301.CrossRefGoogle Scholar
  2. 2.
    Konatham, D., Yu, J., Ho, T.A., et al., Simulation insights for graphene based water desalination membranes, Langmuir, 2013, vol. 29, p. 11884.CrossRefGoogle Scholar
  3. 3.
    Gherasim, C.V., Cuhorka, J., and Mikulasek, P., Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: experimental results and modeling, J. Membr. Sci., 2013, vol. 436, p. 132.CrossRefGoogle Scholar
  4. 4.
    Richards, L.A., Richards, B.S., Corry, B., et al., Experimental energy barriers to anions transporting through nanofiltration membranes, Environ. Sci. Technol., 2013, vol. 47, p. 1968.CrossRefGoogle Scholar
  5. 5.
    Gouaux, E. and Mackinnon, R., Principles of selective ion transport in channels and pumps, Science, 2005, vol. 310, p. 1461.CrossRefGoogle Scholar
  6. 6.
    Aryal, P., Sansom, M.S.P., and Tucker, S.J., Hydrophobic gating in ion channels, J. Mol. Biol., 2015, vol. 427, p. 121.CrossRefGoogle Scholar
  7. 7.
    Wei, Y.-J., Xia, D.-H., and Song, Sh.-Zh., Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis, Russ. J. Electrochem., 2016, vol. 52, p. 560.CrossRefGoogle Scholar
  8. 8.
    Gryzunova, N.N., Denisova, A.G., Yasnikov, I.S., and Vikarchuk, A.A., Preparation of materials with a developed surface by thermal treatment and chemical etching of electrodeposited icosahedral small copper particles, Russ. J. Electrochem., 2015, vol. 51, p. 1176.CrossRefGoogle Scholar
  9. 9.
    Chmiola, J., Yushin, G., Gogotsi, Y., et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nm, Science, 2006, vol. 313, p. 1760.CrossRefGoogle Scholar
  10. 10.
    Yu, Z.N., Tetard, L., Zhai, L., et al., Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 2015, vol. 8, p. 702.CrossRefGoogle Scholar
  11. 11.
    Cannon, J.J., Tang, D., Hur, N., et al., Competitive entry of sodium and potassium into nanoscale pores, J. Phys. Chem. B., 2010, vol. 114, p. 12252.CrossRefGoogle Scholar
  12. 12.
    Chen, H.Y. and Ruckenstein, E., Nanomembrane containing a nanopore in an electrolyte solution: a molecular dynamics approach, J. Phys. Chem. Lett., 2014, vol. 5, p. 2979.CrossRefGoogle Scholar
  13. 13.
    Haria, N.R. and Lorenz, C.D., Atomistic description of pressure-driven flow of aqueous salt solutions through charged silica nanopores, J. Phys. Chem. C, 2015, vol. 119, p. 12298.CrossRefGoogle Scholar
  14. 14.
    Ho, M.C., Casciola, M., Levine, Z.A., et al., Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores, J. Phys. Chem. B, 2013, vol. 117, p. 11633.CrossRefGoogle Scholar
  15. 15.
    Richards, L.A., Schafer, A.I., Richards, B.S., et al., Quantifying barriers to monovalent anion transport in narrow non-polar pores, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 11633.CrossRefGoogle Scholar
  16. 16.
    Shao, Q., Zhou, J., and Lu, L.H., Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes, Nano Lett., 2009, vol. 9, p. 989.CrossRefGoogle Scholar
  17. 17.
    Wander, M.C.F. and Shuford, K.L., Alkali halide interfacial behavior in a sequence of charged slit pores, J. Phys. Chem. C, 2011, vol. 115, p. 23610.CrossRefGoogle Scholar
  18. 18.
    Alishahi, M., Kamali, R., and Abouali, O., Molecular dynamics study of electric double layer in nanochannel, Russ. J. Electrochem., 2015, vol. 51, p. 49.CrossRefGoogle Scholar
  19. 19.
    Galashev, A.E. and Zaikov, Yu.P., Molecular dynamics study of Li+ migration through graphene membranes, Russ. J. Electrochem., 2015, vol. 51, p. 867.CrossRefGoogle Scholar
  20. 20.
    Kalluri, R.K., Ho, T.A., Biener, J., et al., Partition and structure of aqueous NaCl and CaCl2 electrolytes in carbon-slit electrodes, J. Phys. Chem. C, 2013, vol. 117, p. 13609.CrossRefGoogle Scholar
  21. 21.
    Lankin, A.V., Norman, G.E., and Stegailov, V.V., Atomistic simulation of the interaction of an electrolyte with graphite nanostructures in perspective supercapacitors, High Temperature, 2010, vol. 48, p. 837.CrossRefGoogle Scholar
  22. 22.
    Wander, M.C.F. and Shuford, K.L., Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon, J. Phys. Chem. C, 2010, vol. 114, p. 20539.CrossRefGoogle Scholar
  23. 23.
    Xu, K., Ji, X., Chen, C., et al., Electrochemical double layer near polar reduced graphene oxide electrode: insights from molecular dynamic study, Electrochim. Acta, 2015, vol. 166, p. 142.CrossRefGoogle Scholar
  24. 24.
    Song, H.D. and Beck, T.L., Temperature dependence of gramicidin channel transport and structure, J. Phys. Chem. C, 2013, vol. 117, p. 3701.CrossRefGoogle Scholar
  25. 25.
    Tang, Y.W., Chan, K.Y., and Szalai, I., Structural and transport properties of an SPC/E electrolyte in a nanopore, J. Phys. Chem. B, 2004, vol. 108, p. 18204.CrossRefGoogle Scholar
  26. 26.
    Tang, D. and Kim, D., The effect of counter-ions on the ion selectivity of potassium and sodium ions in nanopores, Bio-Med. Mater. Eng., 2014, vol. 24, p. 383.Google Scholar
  27. 27.
    Zhu, Y.D., Guo, X.J., Shao, Q., et al. Molecular simulation study of the effect of inner wall modified groups on ionic hydration confined in carbon nanotube, Fluid Phase Equilib., 2010, vol. 297, p. 215.CrossRefGoogle Scholar
  28. 28.
    Gao, X, Zhao, T.S., Li, Z.G., Effects of ions on the diffusion coefficient of water in carbon nanotubes, J. Appl. Phys., 2014, vol. 116, p. 054311.CrossRefGoogle Scholar
  29. 29.
    Shao, Q, Huang, L.L., Zhou, J., et al., Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 1896.CrossRefGoogle Scholar
  30. 30.
    Shevkunov, S.V., Nucleation of water vapor in microcracks on the surface of ß-AgI aerosol particles: 1. The structure of nuclei, Colloid J., 2007, vol. 69, p. 360.CrossRefGoogle Scholar
  31. 31.
    Shevkunov, S.V., Nucleation of water vapor in microcracks on the surface of ß-AgI aerosol particles: 2. Thermodynamics of nucleation, Colloid J., 2007, vol. 69, p. 378.CrossRefGoogle Scholar
  32. 32.
    Shevkunov, S.V., Structure of water in microscopic fractures of a silver iodide crystal, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 313.CrossRefGoogle Scholar
  33. 33.
    Shevkunov, S.V., Water in extremely narrow planar pores with crystalline walls. 1. Structure, Colloid J., 2014, vol. 76, p. 221.CrossRefGoogle Scholar
  34. 34.
    Shevkunov, S.V., Water in extremely narrow planar pores with crystalline walls. 2. Thermodynamics, Colloid J., 2014, vol. 76, p. 240.CrossRefGoogle Scholar
  35. 35.
    Shevkunov, S.V., A computer simulation of the interaction of unsaturated vapors with a defective surface of a ß-AgI crystal, Russ. J. Phys. Chem. A, 2005, vol. 79, p. 1653.Google Scholar
  36. 36.
    Shevkunov, S.V., Computer simulation of the initial stage of the nucleation of water vapors on the silver iodide crystal surface: 1.Microstructure, Colloid J., 2005, vol. 67, p. 497.CrossRefGoogle Scholar
  37. 37.
    Shevkunov, S.V., Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces, J. Exp. Theor. Phys., 2008, vol. 107, p. 965.CrossRefGoogle Scholar
  38. 38.
    Shevkunov, S.V., Structure of water adsorbed in slitshaped pores of silver iodide crystal, Comput. Theor. Chem., 2016, vol. 1084, p. 1.CrossRefGoogle Scholar
  39. 39.
    Shevkunov, S.V., The phenomenon of domain formation in a liquid film on a polarizable substrate, Dokl. Phys., 2011, vol. 56, p. 323.CrossRefGoogle Scholar
  40. 40.
    Shevkunov, S.V., Collective interactions in the mechanism of adhesion of condensed phase nuclei to a crystal surface. 1. Spatial organization, Colloid J., 2012, vol. 74, p. 589.CrossRefGoogle Scholar
  41. 41.
    Shevkunov, S.V., Collective interactions in the mechanism of adhesion of condensed phase nuclei to a crystal surface. 2. Thermodynamic stability, Colloid J., 2012, vol. 74, p. 608.CrossRefGoogle Scholar
  42. 42.
    Shevkunov, S.V., Domain nucleation in the contact layer at an interface of water and polarizable substrate, Russ. J. Phys. Chem. A, 2013, vol. 87, p. 1654.CrossRefGoogle Scholar
  43. 43.
    Shevkunov, S.V., Water vapor nucleation on a crystal surface in a strong electric field, Colloid J., 2013, vol. 75, p. 444.CrossRefGoogle Scholar
  44. 44.
    Shevkunov, S.V., Structure of the hydration shell of the Na+ ion in a planar nanopore with hydrophobic walls, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 1744.CrossRefGoogle Scholar
  45. 45.
    Shevkunov, S.V., Thermodynamic characteristics of the Na+ ion in a planar nanopore with hydrophobic walls, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 2165.CrossRefGoogle Scholar
  46. 46.
    Shevkunov S.V. Water vapor clustering in the field of a chlorine anion occurring, Colloid J., 2014, vol. 76, p. 490.CrossRefGoogle Scholar
  47. 47.
    Shevkunov, S.V., The hydrate shell of a Cl–ion in a planar nanopore. Structure, Russ. J. Electrochem., 2014, vol. 50, p. 1118.CrossRefGoogle Scholar
  48. 48.
    Shevkunov, S.V., The hydrate shell of a Cl–ion in a planar nanopore. Thermodynamic stability, Russ. J. Electrochem., 2014, vol. 50, p. 1127.CrossRefGoogle Scholar
  49. 49.
    Shevkunov, S.V., Phenomenon of the ousting of a monatomic ion from its hydration shell in flat nanopores, J. Struct. Chem., 2016, vol. 57, p. 104.CrossRefGoogle Scholar
  50. 50.
    Shevkunov, S.V., Hydration of Cl–ion in a planar nanopore with hydrophilic walls. 1. Molecular structure, Colloid J., 2016, vol. 78, p. 121.CrossRefGoogle Scholar
  51. 51.
    Shevkunov, S.V., Hydration of Cl–ion in a planar nanopore with hydrophilic walls. 2. Thermodynamic stability, Colloid J., 2016, vol. 78, p. 137.CrossRefGoogle Scholar
  52. 52.
    Shevkunov, S.V., Computer simulation of the hydration of a chloride anion in a nanopore with hydrophilic walls, Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1015.CrossRefGoogle Scholar
  53. 53.
    Shevkunov, S.V., Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 1. Spatial organization, Colloid J., 2016, vol. 78, p. 242.CrossRefGoogle Scholar
  54. 54.
    Shevkunov, S.V., Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 2. Thermodynamic properties, Colloid J., 2016, vol. 78, p. 257.CrossRefGoogle Scholar
  55. 55.
    Shevkunov, S.V., Structure and electric properties of the hydration shell of a singly charged chloride ion in a nanopore with hydrophilic walls, Russ. J. Electrochem., 2016, vol. 52, p. 397.CrossRefGoogle Scholar
  56. 56.
    Shevkunov, S.V., Effect of hydrophilic walls on the hydration of sodium cations in planar nanopores, Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1879.CrossRefGoogle Scholar
  57. 57.
    Shevkunov, S.V., Structure and electric properties of sodium ion hydrate shell in nanopore with hydrophilic walls, Russ. J. Electrochem., 2016, vol. 92, p. 910.CrossRefGoogle Scholar
  58. 58.
    Shevkunov, S.V., Water vapor nucleation on ion pairs under the conditions of a planar nanopore, Colloid J., 2016, vol. 78, p. 542.CrossRefGoogle Scholar
  59. 59.
    Shevkunov, S.V., Ion pairs in aqueous electrolyte microdrops under conditions of a flat nanopore, Russ. J. Electrochem., 2016, vol. 52, p. 1064.CrossRefGoogle Scholar
  60. 60.
    Shevkunov, S.V., Structure and stability of hydrogen bonds under conditions of heating in nanopores, HighTemperature, 2015, vol. 53, p. 259.Google Scholar
  61. 61.
    Shevkunov, S.V., Numerical calculation of the critical size of a new nuclei phase, Kolloidn. Zh., 1983, vol. 45, no. 5, p. 1019.Google Scholar
  62. 62.
    Shevkunov, S.V., Calculation of the Gibbs energy of the reaction by the Monte Carlo method, Russ. J. Gen. Chem., 2002, vol. 72, p. 685.CrossRefGoogle Scholar
  63. 63.
    Shevkunov, S.V., Computer simulation of molecular complexes H3O+(H2O)n under conditions of thermal fluctuations: 2. Work of formation and structure, Russ. J. Gen. Chem., 2004, vol. 74, p. 1471.CrossRefGoogle Scholar
  64. 64.
    Shevkunov, S.V., Monte Carlo calculations of the characteristics of the hydration sheaths of the Cl–and H3O+ ions in water vapor, Russ. J. Phys. Chem., 2004, vol. 78, p. 1590.Google Scholar
  65. 65.
    Shevkunov, S.V., Computer simulation of the initial stage of the nucleation of water vapors on the silver iodide crystal surface: 2. Thermodynamics, Colloid J., 2005, vol. 67, p. 509.CrossRefGoogle Scholar
  66. 66.
    Shevkunov, S.V., Numerical simulation of water vapor nucleation on electrically neutral nanoparticles, J. Exp. Theor. Phys., 2009, vol. 108, p. 447.CrossRefGoogle Scholar
  67. 67.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Monte Carlo bicanonical ensemble simulation for sodium cation hydration free energy in liquid water, Fluid Phase Equilib., 2005, vol. 233, p. 34.CrossRefGoogle Scholar
  68. 68.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Ionwater cluster free energy computer simulation using some of most popular ion-water and water-water pair interaction models, Chem. Phys., 2007, vol. 332, p. 188.CrossRefGoogle Scholar
  69. 69.
    Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Bicanonical Monte Carlo simulation of the structural properties of Cl–(H2O)n clusters using entropy data based model, J. Mol. Struct.: THEOCHEM, 2005, vol. 725, p. 191.CrossRefGoogle Scholar
  70. 70.
    Shevkunov, S.V., Effect of chlorine ions on the stability of nucleation cores in condensing water vapors, Russ. J. Phys. Chem. A, 2011, vol. 85, p. 1584.CrossRefGoogle Scholar
  71. 71.
    Shevkunov, S.V., Adsorption of water vapor on the AgI surface: A computer experiment, Russ. J. Gen. Chem., 2005, vol. 75, p. 1632.CrossRefGoogle Scholar
  72. 72.
    Shevkunov, S.V., Molecular structure of finely disperse Na+Cl–(H2O)n aerosol particles in water vapor, Colloid J., 2014, vol. 76, p. 753.CrossRefGoogle Scholar
  73. 73.
    Shevkunov, S.V., Charge separation in Na+Cl–(H2O)n clusters in water vapors. 1. Intermolecular interactions, Colloid J., 2010, vol. 72, p. 93.CrossRefGoogle Scholar
  74. 74.
    Shevkunov, S.V., Computer simulation of dissociative equilibrium in aqueous NaCl electrolyte with account for polarization and ion recharging. Model of interactions, Russ. J. Electrochem., 2013, vol. 49, p. 228.CrossRefGoogle Scholar
  75. 75.
    Arshadi, M., Yamdagni, R., and Kebarle, P., Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions, J. Phys. Chem., 1970, vol. 74, p. 1475.CrossRefGoogle Scholar
  76. 76.
    Hiroaka, K., Mizuse, S., and Yamade, S., Solvation of halide ions with water and acetonitrile in the gas phase, J. Phys.Chem., 1988, vol. 92, p. 3943.CrossRefGoogle Scholar
  77. 77.
    Olleta, A.C., Lee, H.M., and Kim, K.S., Ab initio study of hydrated sodium halides NaX(H2O)1–6 NaX(H2O)1–6 (X = F, Cl, Br, and I), J. Chem. Phys., 2006, vol. 124, p. 024321.CrossRefGoogle Scholar
  78. 78.
    Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (Handbook of Atomic and Molecular Physics), Moscow: Atomizdat, 1980Google Scholar
  79. 79.
    Shevkunov, S.V., Computer simulation of dissociative equilibrium in aqueous NaCl electrolyte with account for polarization and ion recharging. Ionization mechanism, Russ. J. Electrochem., 2013, vol. 49, p. 238.CrossRefGoogle Scholar
  80. 80.
    Shevkunov, S.V., A high energy barrier to charge recombination in ionized water vapor, High Energy Chem., 2009, vol. 43, p. 341.CrossRefGoogle Scholar
  81. 81.
    Shevkunov, S.V., Charge separation in Na+Cl–(H2O)n clusters in water vapors. 2. Free energy, Colloid J., 2010, vol. 72, p. 107.CrossRefGoogle Scholar
  82. 82.
    Shevkunov, S.V., Nucleation of water vapor on Na+Cl–ion pairs: computer simulation, Colloid J., 2011, vol. 73, p. 135.CrossRefGoogle Scholar
  83. 83.
    Shevkunov, S.V., Thermodynamic stability of finely dispersed Na+Cl–(H2O)n aerosol particles in water vapor, Colloid J., 2015, vol. 77, p. 359.CrossRefGoogle Scholar
  84. 84.
    Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York: McGraw-Hill, 1956 (translated into Russian).Google Scholar
  85. 85.
    Shevkunov, S.V., Nonpair interactions in Na+(H2O)n clusters under thermal fluctuation conditions, Russ. J. Phys. Chem. A, 2009, vol. 83, p. 972.CrossRefGoogle Scholar
  86. 86.
    Shevkunov, S.V., Polarization effects in Cl–(H2O)n clusters. Computer simulation, Colloid J., 2009, vol. 71, p. 406.CrossRefGoogle Scholar
  87. 87.
    Shevkunov S.V., Crisis of stability of hydration shell of Na+ ion in condensing water vapor, Colloid J., 2011, vol. 73, p. 275.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Peter-the-Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations