Russian Journal of Electrochemistry

, Volume 54, Issue 2, pp 178–185 | Cite as

Structural and Conductive Characteristics of Fe/Co Nanotubes

  • A. L. Kozlovskii
  • K. K. Kadyrzhanov
  • M. V. Zdorovets


The properties of Fe/Co nanotubes, which were fabricated by the method of electrochemical template synthesis, are studied. It is shown that the atomic ratio between the metals in the nanotubes shifts in the direction of cobalt with increasing potential difference during their synthesis; the geometric parameters of nanotubes, in particular, the wall thickness, also vary. Using the X-ray diffraction analysis, it was found that an increase in the concentration of cobalt in the crystal structure of nanotubes leads to a decrease in the interplanar distance and an increase in the conductivity.


track membranes electrochemical deposition nanotubes nanotechnologies phase composition nanostructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parthasarathy, R.V., Phani, K.L.N., and Martin, C.R., Template synthesis of graphitic nanotubules, Adv. Mater., 1995, vol. 7, p. 896.CrossRefGoogle Scholar
  2. 2.
    Chakarvarti, S.K. and Vetter, J., Morphology of etched pores and microstructures fabricated from nuclear track filters, Nucl. Instrum. Methods Phys. Res., Sect. B, 1991, vol. 62, p. 109.CrossRefGoogle Scholar
  3. 3.
    Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett., 1994, vol. 65, no. 19, p. 2484.CrossRefGoogle Scholar
  4. 4.
    Fink, D., Petrov, A.V., Rao, V., and Al, E., Production parameters for the formation of metallic nanotubules in etched tracks, Radiat. Meas., 2003, vol. 36, p. 751.CrossRefGoogle Scholar
  5. 5.
    Veena Gopalan, E., Malini, K.A., and Santhoshkumar, G., Template-assisted synthesis and characterization of passivated nickel nanoparticles, Nanoscale Res. Lett., 2010, vol. 5, p. 889.CrossRefGoogle Scholar
  6. 6.
    Stortini, A.M., Moretto, L.M., and Mardegan, A., Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor, Sens. Actuators, B, 2015, vol. 207, p. 186.CrossRefGoogle Scholar
  7. 7.
    Gehlawat, D. and Chauhan, R.P., Swift heavy ions induced variation in the electronic transport through Cu nanowires, Mater. Chem. Phys., 2014, vol. 145, p. 60.CrossRefGoogle Scholar
  8. 8.
    Amandeep Kaur and Chauhan, R.P., Carbon ion beam-induced variation in orientation of crystal planes of polycrystalline Zn nanowires, Radiat. Eff. Defects Solids, 2014, vol. 169, p. 513.CrossRefGoogle Scholar
  9. 9.
    Pallavi Rana, Devender Gehlawat, and Chauhan, R.P., Effect of gamma irradiation on electrical properties of Cu nanowires, AIP Conf. Proc., 2014, vol. 1591, p. 265.Google Scholar
  10. 10.
    Pallavi Rana and Chauhan, R.P., Size and irradiation effects on the structural and electrical properties of copper nanowires, Physica B, 2014, vol. 451, p. 26.CrossRefGoogle Scholar
  11. 11.
    Cornelius, T.W., Pitch, O., Mtiller, S., Neumann, R., Karim, S., and Duan, J.L., Burnout current density of bismuth nanowires, J. Appl. Physics, 2008, vol. 103, p. 103713.CrossRefGoogle Scholar
  12. 12.
    Nasirpouri, F., GMR in multilayered nanowires electrodeposited in track-etched polyester and polycarbonate membranes, J. Magn. Magn. Mater., 2007, vol. 308, p. 35.CrossRefGoogle Scholar
  13. 13.
    Azarian, A., Field emission of Co nanowires in polycarbonate template, Thin Solid Films, 2009, vol. 517, p. 1736.CrossRefGoogle Scholar
  14. 14.
    Baranova, L.A., Nickel field-emission microcathode: art of fabrication, properties, and applications, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, p. 1686.CrossRefGoogle Scholar
  15. 15.
    Adam, E., Vortex detection by electrical transport measurements on a single lead nanowire under axial magnetic field, Appl. Phys. Lett., 2008, vol. 92, p. 012516.CrossRefGoogle Scholar
  16. 16.
    Sanchez-Barriga, J., Magnetoelectrolysis of Co nanowire arrays grown in a track-etched polycarbonate membrane, J. Magn. Magn. Mater., 2007, vol. 312, p. 99.CrossRefGoogle Scholar
  17. 17.
    Qin, J., Nogués, J., Mikhaylova, M., Roig, A., Muñoz, J.S., and Muhammed, M., Differences in the magnetic properties of Co, Fe, and Ni 250–300 nm wide nanowires electrodeposited in amorphous anodized alumina templates, Chem. Mater., 2005, vol. 17, p. 1829.CrossRefGoogle Scholar
  18. 18.
    Ohgai, T., Hoffer, X., Fabian, A., Gravier, L., and Ansermet, J.-P., Electrochemical synthesis and magnetoresistance properties of Ni, Co and Co/Cu nanowires in a nanoporous anodic oxide layer on metallic aluminium, J. Mater. Chem., 2013, vol. 13, p. 2530.CrossRefGoogle Scholar
  19. 19.
    Haehnel, V., Fahler, S., Schaaf, P., Miglierini, M., Mickel, C., Schultz, L., and Schlörb, H., Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes, Acta Mater., 2010, vol. 58, p. 2330.CrossRefGoogle Scholar
  20. 20.
    Salem, M.S., Sergelius, P., Zierold, R., Montero Moreno, J.M., Görlitz, D., and Nielsch, K., Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition, J. Mater. Chem., 2012, vol. 22, p. 8549.CrossRefGoogle Scholar
  21. 21.
    Sharif, R., Shamaila, S., Ma, M., Yao, L.D., Yu, R.C., Han, X.F., Wang, Y., and Khaleeq-ur-Rahman, M., Magnetic and microstructural characterizations of CoFe and CoFeB nanowires, J. Magn. Magn. Mater., 2008, vol. 320, p. 1512.CrossRefGoogle Scholar
  22. 22.
    Hua, Z., Yang, S., Huang, H., Lv, L., Lu, M., Gu, B., and Du, Y., Metal nanotubes prepared by a sol-gel method followed by a hydrogen reduction procedure, Nanotechnology, 2006, vol. 17, p. 5106.CrossRefGoogle Scholar
  23. 23.
    Zhou, D., Wang, T., Zhu, M.G., Guo, Z.H., Li, W., and Li, F.S., Magnetic interaction in FeCo alloy nanotube array, J. Magn., 2011, vol. 16, p. 413.CrossRefGoogle Scholar
  24. 24.
    Li, F.S., Zhou, D., Wang, T., Wang, Y., Song, L.J., and Xu, C.T., Fabrication and magnetic properties of FeCo alloy nanotube array, J. Appl. Phys., 2007, vol. 101, p. 1.Google Scholar
  25. 25.
    Bond, A.M., Fleischmann, M., and Robinson, J., Voltammetric measurements using microelectrodes in highly dilute solutions: theoretical considerations, J. Electroanal. Chem., 1984, vol. 168, p. 299.CrossRefGoogle Scholar
  26. 26.
    Rusakov, V.S., Kadyrzhanov, K.K., Kozlovskiy, A.L., Kiseleva, T.Yu., Zdorovets, M.V., and Fadeev, M.S., A Mössbauer study of iron and iron–cobalt nanotubes in polymer ion-track membranes, Moscow Univ. Physics Bull., 2016, vol. 71, p.193.CrossRefGoogle Scholar
  27. 27.
    Frolov, K.V., Zagorskii, D.L., Lyubutin, I.S., Korotkov, V.V., Bedin, S.A., Sulyanov, S.N., Artemov, V.V., and Mchedlishvili, B.V., Synthesis, phase composition, and magnetic properties of iron nanowires prepared in the pores of polymer track-etched membranes, JETP Letters, 2014, vol. 99, p. 570.CrossRefGoogle Scholar
  28. 28.
    Dauginet-De Pra, L., Fabrication of a new generation of track-etched templates and their use for the synthesis of metallic and organic nanostructures, Nucl. Instrum. Methods Phys. Res., Sect. B, 2002, vol. 196, p. 81.CrossRefGoogle Scholar
  29. 29.
    Narayanan, T.N., Shaijumon, M.M., and Ajayan, P.M., Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth, J. Phys. Chem. C, 2008, vol. 112, p. 14281.CrossRefGoogle Scholar
  30. 30.
    Motoyama, M., Fukunaka, Y., Sakka, T., Ogata, Y.H., and Kikuchi, S., Electrochemical processing of Cu and Ni nanowire arrays, J. Electroanal. Chem., 2005, vol. 584, p. 84.CrossRefGoogle Scholar
  31. 31.
    Shao, P., Ji, G., and Chen, P., Gold nanotube membranes: Preparation, characterization and application for enantioseparation, J. Memb. Sci., 2005, vol. 255, p. 1.CrossRefGoogle Scholar
  32. 32.
    Chen, Z., Zhan, Q., Xue, D., Li, F., and Zhou, X., Mossbauer study of Fe—Co nanowires, J. Phys. Condens. Matter., 2002, vol. 14, p. 613.CrossRefGoogle Scholar
  33. 33.
    Hunter, D., Osborn, W., Wang, K., Kazantseva, N., Hattrick-Simpers, J., Suchoski, R., Takahashi, R., Young, M.L., Mehta, A., Bendersky, L.A., Lofland, S.E., Wuttig, M., and Takeuchi, I., Giant magnetostriction in annealed Co1–xFex thin-films, Nat. Commun., 2011, vol. 2, article number 518.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. L. Kozlovskii
    • 1
  • K. K. Kadyrzhanov
    • 2
  • M. V. Zdorovets
    • 1
    • 2
    • 3
  1. 1.Institute of Nuclear Physics, Astana branchAstanaKazakhstan
  2. 2.Gumilyov Eurasian National UniversityAstanaKazakhstan
  3. 3.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations