Skip to main content
Log in

Comparative Study of Special Features of the Oxygen Reaction (Molecular Oxygen Ionization and Evolution) in Aqueous and Nonaqueous Electrolyte Solutions (a Review)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Studies of the oxygen reaction, including the oxygen ionization and evolution processes occurring at typical electrode materials in aqueous and nonaqueous electrolytes, are analyzed. A connection between the problematics of the oxygen electrode reaction in nonaqueous media and the developing of novel batteries, in the first place, Li–O2 batteries, is emphasized. Unlike aqueous solutions, the oxygen reduction in aprotic electrolytes was shown to occur without breaking of the O–O bond; it is accompanied by formation of poorly soluble product of two-electron reaction (Li2O2) in the pores of positive electrode. The effect of the solvent donor number and the anion composition on the oxygen reduction mechanism and the lithium peroxide deposit structure is described. A marked reduction of the Li2O2 oxidation overvoltage when passing from carbonaceous materials to platinum-containing catalysts in the positive electrode is elucidated; in the latter case, the effect of electrocatalyst type upon the Li2O2 formation reaction is somewhat reduced. The elucidation of the contribution of processes occurring at the free and lithium-peroxide-covered electrode surface during the oxygen reaction for wide variety of active materials is formulated as the main basic problem of the future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoare, J.P., The Electrochemistry of Oxygen, NewYork: Interscience, 1968.

    Google Scholar 

  2. Appleby, A.J., in Modern Aspects of Electrochemistry, vol. 9, Bockris, J.O’M. and Conway, B.E., Eds., NewYork: Plenum, 1974, p. 369–478.

    CAS  Google Scholar 

  3. Sawyer, D.T., Oxygen Chemistry, New York: Oxford University Press, 1991.

    Google Scholar 

  4. Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod s kol’tsom (Rotating Ring–Disk Electrode), Moscow: Nauka, 1987.

    Google Scholar 

  5. Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Xing,W., Yin, G., and Zhang, J., Eds., Elsevier, 2014, p.306.

  6. Trasatti, S., in Electrochemical Hydrogen Technologies, Wendt, H., Ed., Amsterdam: Elsevier, 1990, p. 1–14.

  7. Fabbri, E., Habereder, A., Waltar, K., Kotz, R., and Schmidt, T.J., Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catal. Sci. Technol., 2014, vol. 4, p. 3800.

    Article  CAS  Google Scholar 

  8. Trotochaud, L. and Boettcher, S.W., Precise oxygen evolution catalysts: status and opportunities, Scripta Material, 2014, vol. 74, p.25.

    Article  CAS  Google Scholar 

  9. McCrory, C.C.L., Jung, S., Peters, J.C., and Jaramillo, T.F., Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc., 2013, vol. 135, p. 16977.

    Article  CAS  PubMed  Google Scholar 

  10. Appleby, A.J., Electrocatalysis of aqueous dioxygen reduction, J. Electroanal. Chem., 1993, vol. 357, p.117.

    Article  CAS  Google Scholar 

  11. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure, J. Molecular Cat., 1986, vol. 38, p.5.

    Article  CAS  Google Scholar 

  12. Tarasevich, M.R., Sadkowski, A., and Yeager, E., in Comprehensive Treatise of Electrochemistry, Conway, B.E., Bockris, J.O.M., Yeager, E., Khan, S.U.M., and White, R.E., Eds., New York: Plenum, 1983, Chap. 6, p. 301–398.

  13. Adzic, R., in Electrocatalysis, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley–VCH, 1998, p. 197–242.

  14. Damjanovic, A., in Electrochemistry in Transition, Murphy, O.J., Srinivasan, S., and Conway, B.E., Eds., New York: Plenum, 1992, p. 107–126.

  15. Paulus, U., Shmidt, T., Gasteiger, H., and Behm, R., Oxygen reduction on a high-surface area Pt/vulcan carbon catalyst: a thin-film rotating ring-disk electrode study, J. Electroanal. Chem., 2001, vol. 495, p.134.

    Article  CAS  Google Scholar 

  16. Tarasevich, M.R. and Khrushcheva, E.I., in: Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complicated Electrochemical Reactions), Moscow: Nauka, 1981, p.104.

    Google Scholar 

  17. Ramaswamy, N. and Mukerjee, S., Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on pt and non-Pt surfaces: acid versus alkaline media, Adv. Phys. Chem., 2012, vol. 2012, p.17.

    Article  CAS  Google Scholar 

  18. Tarasevich, M.R. and Korchagin, O.V., Electrocatalysis and pH (a review), Russ. J. Electrochem., 2013, vol. 49, p.600.

    Article  CAS  Google Scholar 

  19. Gottesfeld, S., Fuel Cell Catalysis a Surface Science Approach, New York: Wiley, 2009.

    Google Scholar 

  20. Nie, Y., Li, L., and Wei, Z., Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev., 2015, vol. 44, p. 2168.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, S., Yuan, X.-Z., Cheng, Hin J.N., Wang, H., Friedrich, K.A., and Schulze, M., A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources, 2009, vol. 194, p.588.

    Article  CAS  Google Scholar 

  22. Borup, R., Meyers, J., Pivovar, B., Kim, Y.S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K., Zawodzinski, T., Boncella, J., McGrath, J.E., Inaba, M., Miyatake, K., Hori, M., Ota, K., Ogumi, Z., Miyata, S., Nishikata, A., Siroma, Z., Uchimoto, Y., Yasuda, K., Kimijima, K., and Iwashita, N., Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 2007, vol. 107, p. 3904.

    Article  CAS  PubMed  Google Scholar 

  23. Rodgers, M.P., Bonville, L.J., Kunz, H.R., Slattery, D.K., and Fenton, J.M., Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime, Chem. Rev., 2012, vol. 112, p. 6075.

    Article  CAS  PubMed  Google Scholar 

  24. Tarasevich, M.R. and Korchagin, O.V., Rapid diagnostics of characteristics and stability of fuel cells with proton-conducting electrolyte, Russ. J. Electrochem., 2014, vol. 50, p.737.

    Article  CAS  Google Scholar 

  25. Tarasevich, M.R. and Bogdanovskaya, V.A., Mechanism of corrosion of nanosized multicomponent cathodic catalysts and formation of core-shell structures, Al’Ternativnaya Energetika Ekologiya, 2009, vol. 12, p.24.

    Google Scholar 

  26. Imanishi, N., Luntz, A.C., and Bruce, P.G., The Lithium-Air Battery: Fundamentals, New York: Springer, 2014.

    Book  Google Scholar 

  27. Li, Q., Cao, R., Cho, J., and Wu, G., Nanostructured carbon-based cathode catalysts for nonaqueous lithium-oxygen batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 13568.

    Article  CAS  PubMed  Google Scholar 

  28. Franco, A.A. and Xue, K.-H., Carbon-based electrodes for lithium air batteries: scientific and technological challenges from a modeling perspective, ECS J. Solid State Sci. Tech., 2013, vol. 2, no. 10, p. M3084.

    Article  CAS  Google Scholar 

  29. Balaish, M., Kraytsberg, A., and Ein-Eli, Y., A critical review on lithium-air battery electrolytes, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 2801.

    Article  CAS  PubMed  Google Scholar 

  30. Xia, C., Black, R., Fernandes, R., Adams, B., and Nazar, L.F., The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries, Nat. Chem., 2015, vol. 7, p. 496.

    Article  CAS  PubMed  Google Scholar 

  31. McCloskey, B.D., Burke, C.M., Nichols, J.E., and Renfrew, S.E., Mechanistic insights for the development of Li–O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities, Chem. Commun., 2015, vol. 51, p. 12701.

    Article  CAS  Google Scholar 

  32. Hartmann, P., Bender, C.L., Vracar, M., Durr, A.K., Garsuch, A., Janek, J., and Adelhelm, Ph., A rechargeable room-temperature sodium superoxide (NaO2) battery, Nat. Materials, 2013, vol. 12, p.228.

    Article  CAS  PubMed  Google Scholar 

  33. Ren, X. and Wu, Y., A low-overpotential potassiumoxygen battery based on potassium superoxide, J. Am. Chem. Soc., 2013, vol. 135, p. 2923.

    Article  CAS  PubMed  Google Scholar 

  34. Liu, W., Sun, Q., Yang, Y., Xie, J.-Y., and Fu, Z.-W., An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts, Chem. Commun., 2013, vol. 49, p. 1951.

    Article  CAS  Google Scholar 

  35. Ha, S., Kim, J.-K., Choi, A., Kim, Y., and Lee, K.T., Sodium-metal halide and sodium-air batteries, ChemPhysChem, 2014, vol. 15, p. 1971.

    Article  CAS  PubMed  Google Scholar 

  36. Kang, S.Y., Mo, Y., Ong, S.P., and Ceder, G., Nanoscale stabilization of sodium oxides: implications for Na–O2 batteries, Nano Lett., 2014, vol. 14, p. 1016.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, W.-M., Yin, W.-W., Ding, F., Sang, L., and Fu, Z.-W., NiCo2O4 nanosheets supported on Ni foam for rechargeable non-aqueous sodium-air batteries, Electrochem. Commun, 2014, vol. 45, p.87.

    Article  CAS  Google Scholar 

  38. Wu, Y. and Xiaodi, R., Potassium-oxygen batteries based on potassium superoxide. Pat. US, WO, no. 2014116814, 2014

    Google Scholar 

  39. Jian, Z., Chen, Y., Li, F., Zhang, T., Liu, C., and Zhou, H., High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode, J. Power Sources, 2014, vol. 251, p.466.

    Article  CAS  Google Scholar 

  40. Adelhelm, P., Hartmann, P., Bender, C.L., Busche, M., Eufinger, C., and Janek, J., From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries, Beilstein J. Nanotech., 2015, vol. 6, p. 1016.

    Article  CAS  Google Scholar 

  41. Maricle, D.L. and Hodgson, W.G., Reducion of oxygen to superoxide anion in aprotic solvents, Anal. Chem., 1965, vol. 37, p. 1562.

    Article  CAS  Google Scholar 

  42. Peover, M.E. and White, B.S., Electrolytic reduction of oxygen in aprotic solvents: the superoxide ion, Electrochim. Acta, 1966, vol. 11, p. 1061.

    Article  CAS  Google Scholar 

  43. Nekrasov, L.H., Dukhanova, L.A., Dubrovina, N.I., and Vykhodtseva, L.H., Study of cathodic oxygen reduction reaction in dimethylformamide solutions by using rotating ring–disk electrode, Elektrokhimiya, 1970, vol. 6, p.388.

    CAS  Google Scholar 

  44. Jain, P.S. and Lal, S., Electrolytic reduction of oxygen at solid electrodes in aprotic solvents-the superoxide ion, Electrochim. Acta, 1982, vol. 27, p.759.

    Article  CAS  Google Scholar 

  45. Sawyer, D.T., Chiericato, G., Angelis, C.T., Nanni, E.J., and Tsuchiya, T., Effects of media and electrode materials on the electrochemical reduction of dioxygen, Anal. Chem., 1982, vol. 54, p. 1720.

    Article  CAS  Google Scholar 

  46. Radyushkina, K.A., Zonina, E.O., and Tarasevich, M.P., Oxygen electroreduction at pyrolytic graphite in acetonitrile solutions, Elektrokhimiya, 1984, vol. 20, p.977.

    CAS  Google Scholar 

  47. Vasudevan, D. and Wendt, H., Electroreduction of oxygen in aprotonic media, J. Electroanal. Chem., 1995, vol. 392, p.69.

    Article  Google Scholar 

  48. Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., and Bruce, P.G., Rechargeable Li2O2 electrode for lithium batteries, J. Am. Chem. Soc., 2006, vol. 128, p. 1390.

    Article  CAS  PubMed  Google Scholar 

  49. AlNashef, I.M., Leonard, M.L., Kittle, M.C., Matthews, M.A., and Weidner, J.W., Electrochemical generation of superoxide in room temperature ionic liquids, Electrochem. Solid-State Lett., 2001, vol. 4, p.16.

    Article  Google Scholar 

  50. Lu, Y.-Ch., Gasteiger, H.A., and Shao-Horn, Y., Catalytic activity trends of oxygen reduction reaction for nonaqueous li-air batteries, J. Am. Chem. Soc., 2011, vol. 133, p. 19048.

    Article  CAS  PubMed  Google Scholar 

  51. Krishna, G., Dathar, Ph., Shelton, W.A., and Xu, Y., Trends in the catalytic activity of transition metals for the oxygen reduction reaction by lithium, J. Phys. Chem. Lett., 2012, vol. 3, p.891.

    Article  CAS  Google Scholar 

  52. Tripachev, O.V., Maleeva, E.A., and Tarasevich, M.R., Oxygen electroreduction in propylene carbonate solutions, Russ. J. Electrochem., 2015, vol. 51 P, p. 103–111.

    Article  CAS  Google Scholar 

  53. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., and Hendrickson, M., A elucidating the mechanism of oxygen reduction for lithium-air battery applications, J. Phys. Chem. C, 2009, vol. 113, p. 20127.

    Article  CAS  Google Scholar 

  54. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., and Hendrickson, M.A., Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery, J. Phys. Chem. C, 2010, vol. 114, p. 9178.

    Article  CAS  Google Scholar 

  55. Johnson, L., Li, C., Liu, Z., Chen, Y., Freunberger, S.A., Ashok, P.C., Praveen, B.B., Dholakia, K., Tarascon, J.-M., and Bruce, P.G., The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries, Nat. Chem., 2014, vol. 6, p. 1091.

    Article  CAS  PubMed  Google Scholar 

  56. Yao, K.P.C., Risch, M., Sayed, S.Y., Lee, Y.-L., Harding, J., Grimaud, A., Pour, N., Xu, Z., Zhou, J., Mansour, A., Barde, F., and Shao-Horn, Y., Solidstate activation of Li2O2 oxidation kinetics and implications for Li–O2 batteries, Energy Environ. Sci., 2015, vol. 8, p. 2417.

    Article  CAS  Google Scholar 

  57. Cui, Q., Zhang, Y., Ma, S., and Peng, Z., Li2O2 oxidation: the charging reaction in the aprotic Li–O2 batteries, Sci. Bull., 2015, vol. 60, p. 1227.

    Article  CAS  Google Scholar 

  58. Giordani, V., Freunberger, S.A., Bruce, P.G., Tarascon, J.-M., and Larcher, D., H2O2 decomposition reaction as selecting tool for catalysts in Li–O2 cells, Electrochem. Solid-State Lett., 2010, vol. 13, p. A180.

    Article  CAS  Google Scholar 

  59. Casas-Cabanas, M., Binotto, G., Larcher, D., Lecup, A., Giordani, V., and Tarascon, J.-M., Defect chemistry and catalytic activity of nanosized Co3O4, Chem. Mater., 2009, vol. 21, p. 1939.

    Article  CAS  Google Scholar 

  60. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbonaceous Materials), Moscow: Nauka, 1984.

    Google Scholar 

  61. Dai, L., Xue, Y., Qu, L., Choi, H.-J., and Baek, J.-B., Metal-free catalysts for oxygen reduction reaction, Chem. Rev., 2015, vol. 115, p. 4823.

    Article  CAS  PubMed  Google Scholar 

  62. Markovic, N.M., Schmidt, T.J., Stamenkovic, V., and Ross, P.N., Oxygen reduction reaction on pt and pt bimetallic surfaces: a selective review, Fuel Cells, 2001, vol. 1, p.105.

    Article  CAS  Google Scholar 

  63. Damjanovich, A., Genshaw, M., and Bockris, J., The mechanism of oxygen reduction at platinum in alkaline solutions with special reference to H2O2, J. Electrochem. Soc., 1967, vol. 114, p. 1107.

    Article  Google Scholar 

  64. Markovic, N.M., Gasteiger, H.A., and Ross, P.N., Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring-Pt(hkl) disk studies, J. Phys. Chem., 1995, vol. 99, p. 3411.

    Article  CAS  Google Scholar 

  65. Norskov, J.K., Rosseisi, J., Logadottic, A., Lidqvist, L., and Kitchin, J.R., Bligaard, T., and Jonsson, H., Origin of the overpotential for oxygen reduction at a fuelcell cathode, J. Phys.Chem. B, 2004, vol. 108, p. 17886.

    Article  CAS  Google Scholar 

  66. Eichler, A., Mittendorfer, F., and Hafner, J., Precursor-mediated adsorption of oxygen on the (111) surfaces of platinum-group metals, Phys. Rev. B, 2000, vol. 62, p. 4744.

    Article  CAS  Google Scholar 

  67. Sidik, R.A. and Anderson, A.B., Density functional theory study of O2 electroreduction when bonded to a Pt dual site, J. Electroanal.Chem., 2002, vol. 528, p.69.

    Article  CAS  Google Scholar 

  68. Anderson, A.B., Cai, Y., Sidik, R.A., and Kang, D.B., Advancements in the local reaction center electron transfer theory and the transition state structure in the first step of oxygen reduction over platinum, J. Electroanal. Chem., 2005, vol. 580, p.17.

    Article  CAS  Google Scholar 

  69. Seung-Hoon, J., Louie, S.G., and Cohen, M.L., Electronic properties of oxidized carbon nanotubes, Phys. Rev. Lett., 2000, vol. 85, p. 1710.

    Article  Google Scholar 

  70. Jaonen, F., Horanz, J., and Lefevre, M., Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction, Appl. Mat. Interface, 2009, vol. 1, p. 1623.

    Article  CAS  Google Scholar 

  71. Liu, G., Li, X., Ganesan, R., and Popov, B.N., Studies of oxygen reduction reaction active sites and stability of nitrogen-modified carbon composite catalysts for pem fuel cells, Electrochim. Acta, 2010, vol. 55, p. 2853.

    Article  CAS  Google Scholar 

  72. Blizanac, B.B., Ross, P.N., and Markovic, N.M., Oxygen electroreduction on Ag(111): the pH effect, Electrochim. Acta, 2007, vol. 52, p. 2264.

    Article  CAS  Google Scholar 

  73. Zhutaeva, G.V., Bogdanovskaya, V.A., Davydova, E.S., Kazanskii, L.P., and Tarasevich, M.R., Kinetics and mechanism of oxygen electroreduction on vulcan XC-72R carbon black modified by pyrolysis products of cobalt 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrine in a broad pH interval, J. Solid State Electrochem., 2014, vol. 18, p. 1319.

    Article  CAS  Google Scholar 

  74. Bockris, J.O’M. and Shamshul Huq, A.K.M., The mechanism of the electrolytic evolution of oxygen on platinum, Proc. Roy. Soc. London, Ser. A, 1956, vol. 237, p.277.

    Article  CAS  Google Scholar 

  75. Bockris, J.O’M. and Otagawa, T., The electrocatalysis of oxygen evolution on perovskites, J. Electrochem. Soc., 1984, vol. 131, p.290.

    Article  CAS  Google Scholar 

  76. Lyons, M.E.G. and Brandon, M.P., The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1–nickel, Int. J. Electrochem. Sci., 2008, vol. 3, p. 1386.

    CAS  Google Scholar 

  77. Tarasevich, M.R. and Radyushkina, K.A., Study of parallel-sequential stages of oxygen and hydrogen peroxide reactions. II. N2O2 oxidation and reduction at platinum, Elektrokhimiya, 1970, vol. 6, p.376.

    CAS  Google Scholar 

  78. Tarasevich, M.R., Zakharkin, G.I., and Smirnova, P.M., Study of oxygen and hydrogen peroxide reactions by using RDE. III. Hydrogen peroxide decomposition at platinum in the presence of different anions and cations, Elektrokhimiya, 1973, vol. 9, p.645.

    CAS  Google Scholar 

  79. Tarasevich, M.R. and Radyushkina, K.A., Electrocatalysis at metal-porphirins, Usp. Khim., 1980, vol. 49, p. 1498.

    Article  CAS  Google Scholar 

  80. Trasatti, S., Markovic, N., Gasteiger, H., and Ross, P.N., Transition Metal Oxides: Versatile Materials for Electrocatalysis, J. Electrochem. Soc., 1997, vol. 144, p. 1591.

    Article  Google Scholar 

  81. Lu, Y.-C., Xu, Z., Gasteiger, H.A., Chen, S., Hamad-Schifferli, K., and Shao-Horn, Y., Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries, J. Am. Chem. Soc., 2010, vol. 132, p. 12170.

    Article  CAS  PubMed  Google Scholar 

  82. McCloskey, B.D., Scheffler, R., Speidel, A., Bethune, D.S., Shelby, R.M., and Luntz, A.C., On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries, J. Am. Chem. Soc., 2011, vol. 133, p. 18038.

    Article  CAS  PubMed  Google Scholar 

  83. Harding, J.R., Lu, Y.-C., Tsukada, Y., and Shao-Horn, Y., Evidence of catalyzed oxidation of Li–O2 for rechargeable Li–air battery applications, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 10540.

    Article  CAS  PubMed  Google Scholar 

  84. Gittleson, F.S., Sekol, R.C., Doubek, G., Linardi, M., and Taylor, A.D., Catalyst and electrolyte synergy in Li–O2 batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 3230.

    Article  CAS  PubMed  Google Scholar 

  85. Lu, Y.-Ch., Gasteiger, H.A., and Shao-Horn, Y., Method development to evaluate the oxygen reduction activity of high-surface-area catalysts for Li–air batteries, Electrochem. Solid-State Lett., 2011, vol. 14, p.70.

    Article  CAS  Google Scholar 

  86. Li, Y.L., Wang, J.J., Li, X.F., Liu, J., Geng, D.S., Yang, J.L., Li, R.Y., and Sun, X.L., Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries, Electrochem. Commun., 2011, vol. 13, p. 668.

    Article  CAS  Google Scholar 

  87. Meini, St., Piana, M., Beyer, H., Schwammlein, J., and Gasteiger, H.A., Effect of carbon surface area on first discharge capacity of Li–O2 cathodes and cyclelife behavior in ether-based electrolytes, J. Electrochem. Soc., 2012, vol. 159, p. 2135.

    Article  CAS  Google Scholar 

  88. Tran, C., Yang, X.-Q., and Qu, D., Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 2010, vol. 195, p. 2057.

    Article  CAS  Google Scholar 

  89. Kichambare, P., Kumar, J., Rodrigues, S., and Kumar, B., Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries, J. Power Sources, 2011, vol. 196, p. 3310.

    Article  CAS  Google Scholar 

  90. Beyer, H., Meini, S., Tsiouvaras, N., Piana, M., and Gasteiger, H.A., Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li–air batteries, Phys. Chem. Chem. Phys., 2013, vol. 15, p. 11025.

    Article  CAS  PubMed  Google Scholar 

  91. Kang, J., Li, O.L., and Saito, N., Hierarchical mesomacro structure porous carbon black as electrode materials in Li–air battery, J. Power Sources, 2014, vol. 261, p.156.

    Article  CAS  Google Scholar 

  92. Park, H.W., Lee, D.U., Nazar, L.F., and Chen, Z., Oxygen reduction reaction using MnO2 nanotubes/ nitrogen-doped exfoliated graphene hybrid catalyst for Li–O2 battery applications, J. Electrochem. Soc., 2013, vol. 160, p.344.

    Article  CAS  Google Scholar 

  93. Kavakli, C., Meini, S., Harzer, G., Tsiouvaras, N., Piana, M., Siebel, A., Garsuch, A., Gasteiger, H.A., and Herranz, J., Nanosized carbon-supported manganese oxide phases as lithium-oxygen battery cathode catalysts, Chem. Cat. Chem., 2013, vol. 5, p. 3358.

    CAS  Google Scholar 

  94. Zhao, G., Xu, Zh., and Sun, K., Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li–O2 batteries, J. Mater. Chem. A, 2013, vol. 1, p. 12862.

    Article  CAS  Google Scholar 

  95. Du, Zh., Yang, P., Wang, L., Lu, Y., Goodenough, J.B., Zhang, J., and Zhang, D., Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries, J. Power Sources, 2014, vol. 265, p.91.

    Article  CAS  Google Scholar 

  96. Kundu, D., Black, R., Berg, E.J., and Nazar, L.F., A highly active nanostructured metallic oxide cathode for aprotic Li–O2 batteries, Energy Environ. Sci., 2015, vol. 8, p. 1292.

    Article  CAS  Google Scholar 

  97. Shang, C., Dong, S., Hu, P., Guan, J., Xiao, D., Chen, X., Zhang, L., Gu, L., Cui, G., and Chen, L., Compatible interface design of CoO-based Li–O2 battery cathodes with long-cycling stability, Sci. Rep., 2015, vol. 5, p. 8335.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Aurbach, D., Daroux, M., Faguy, P., and Yeager, E., The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts, J. Electroanal. Chem., 1991, vol. 297, p.225.

    Article  CAS  Google Scholar 

  99. Yu, Q. and Ye, S., In-situ study of oxygen reduction in DMSO solution: a fundamental study for development of lithium–oxygen battery, J. Phys. Chem. C, 2015, vol. 119, p. 12236.

    Article  CAS  Google Scholar 

  100. Gallant, B.M., Kwabi, D.G., Mitchell, R.R., Zhou, J., Thompson, C.V., and Shao-Horn, Y., Influence of LiO2 morphology on oxygen reduction and evolution kinetics in Li–O2 batteries, Energy Environ. Sci., 2013, vol. 6, p. 2518.

    Article  CAS  Google Scholar 

  101. Lau, S. and Archer, L.A., Nucleation and growth of lithium peroxide in the Li–O2 battery, Nano Lett., 2015, vol. 15, p. 5995.

    Article  CAS  PubMed  Google Scholar 

  102. Ortiz-Vitoriano, N., Amanchukwu, C.V., Kwabi, D., Hammond, P.T., and Shao-Horn, Y., Electrolyte Effects on Chemical Stability of NaO2 in Na–O2 Batteries, Proc. 228th ECS Meeting, 2015, p.265.

    Google Scholar 

  103. Peng, Z., Freunberger, S.A., Hardwick, L.J., Chen, Y., Giordani, V., Barde, F., Novak, P., Graham, D., Tarascon, J.M., and Bruce, P.G., Oxygen reactions in a non-aqueous Li+ electrolyte, Angew. Chem., Int. Ed. Engl., 2011, vol. 50, p. 6351.

    Article  CAS  Google Scholar 

  104. Viswanathan, V., Thygesen, K.S., Hummelshoj, J.S., Norskov, J.K., Girishkumar, G., McCloskey, B.D., and Luntz, A.C., Electrical conductivity in Li2O2 and its role in determining capacity limitations in nonaqueous Li–O2 batteries, J. Chem. Phys., 2011, vol. 135, p. 214704.

    Article  CAS  PubMed  Google Scholar 

  105. Gunasekara, I., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., and Abraham, K.M., Microelectrode diagnostics of lithium–air batteries, J. Electrochem. Soc., 2014, vol. 161, p.381.

    Article  CAS  Google Scholar 

  106. Dilimon, V.S., Lee, D.-G., Yim, S.-D., and Song, H.-K., Multiple roles of superoxide on oxygen reduction reaction in Li+-containing nonaqueous electrolyte: contribution to the formation of oxide as well as peroxide, J. Phys. Chem. C, 2015, vol. 119, p. 3472.

    Article  CAS  Google Scholar 

  107. Vitvitskaya, G.V. and Kozelkova, N.I., Electrode reactions of hydrogen peroxide at palladium in neutral and weakly alkaline electrolytes, Elektrokhimiya, 1971, vol. 7, p.663.

    CAS  Google Scholar 

  108. Vitvitskaya, G.V., Strakhova, V.V., and Kozelkova, N.I., Electrode reactions of N2O2 at palladium in acid electrolytes, Zh. Prikl. Khim., 1972, vol. 45, p. 2429.

    CAS  Google Scholar 

  109. Shao, M.H. and Adzic, R.R., Spectroscopic identification of the reaction intermediates in oxygen reduction on gold in alkaline solutions, J. Phys. Chem. B, 2005, vol. 109, p. 16563.

    Article  CAS  PubMed  Google Scholar 

  110. Damjanovic, A., Dey, A., and Bockris, J.O’M., Kinetics of oxygen evolution and dissolution on platinum electrodes, Electrochim. Acta, 1966, vol. 11, p.791.

    Article  CAS  Google Scholar 

  111. Tarasevich, M.R. and Vilinskaya, V.S., Comparison of oxygen chemisorption from gas phase and during anodic polarization, Elektrokhimiya, 1971, vol. 7, p.710.

    CAS  Google Scholar 

  112. Kastening, B. and Kazemiford, G., Elektrochemische reduktion von sauerstoff zum superoxid-anion in wassriger lösung (electrochemical reduction of oxygen to superoxide anions in aqueous solutions), Ber. Bunsen-Ges. Phys. Chem., 1970, vol. 74, p.551.

    CAS  Google Scholar 

  113. Gunasekara, I., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., and Abraham, K.M., A study of the influence of lithium salt anions on oxygen reduction reactions in Li–air batteries, J. Electrochem. Soc., 2015, vol. 162, p. A1055.

    Article  CAS  Google Scholar 

  114. Zhai, D., Lau, K.Ch., Wang, H.-H., Wen, J., Miller, D.J., Lu, J., Kang, F., Li, B., Yang, W., Gao, J., Indacochea, E., Curtiss, L.A., and Amine, K., Interfacial effects on lithium superoxide disproportionation in Li–O2 batteries, Nano Lett., 2015, vol. 15, p. 1041.

    Article  CAS  PubMed  Google Scholar 

  115. Viswanathan, V., Norskov, J.K., Speidel, A., Scheffler, R., Gowda, S., and Luntz, A.C., Li2O2 kinetic overpotentials: tafel plots from experiment and firstprinciples theory, J. Phys. Chem. Lett., 2013, vol. 4, p.556.

    Article  CAS  PubMed  Google Scholar 

  116. Wang, Z-L., Xu, D., Xu, J-J., and Zhang, X-B., Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes, Chem. Soc. Rev., 2014, vol. 43, p. 7746.

    Article  CAS  PubMed  Google Scholar 

  117. Paliteiro, C., Hamnett, A., and Goodenough, J.B., The electroreduction of oxygen at pyrolytic graphite, J. Electroanal. Chem., 1987, vol. 233, p.147.

    Article  CAS  Google Scholar 

  118. Bohm, H., Fuel cell assemblies with an acidic electrolyte, J. Power Sources, 1977, vol. 1, p.177.

    Article  Google Scholar 

  119. Radyushkina, K.A., Levina, O.A, Tarasevich, M.R., Burshtein, R.Kh., Berezin, B.D., Shormanova, L.P., and Koifman, O.I., Oxygen reduction at porous carbon electrodes activated by metal phthalocyanines, Elektrokhimiya, 1975, vol. 11, p.989.

    CAS  Google Scholar 

  120. Radin, M.D., Tian, F., and Siegel, D.J., Electronic structure of Li2O2 {0001} surfaces, J. Mater. Sci., 2012, vol. 47, p. 7564.

    Article  CAS  Google Scholar 

  121. Varley, J.B., Viswanathan, V., and Luntz, A.C., Lithium and oxygen vacancies and their role in Li2O2 charge transport in Li–O2 batteries, Energy Environ. Sci., 2014, vol. 7, p.720.

    Article  CAS  Google Scholar 

  122. Luntz, A.C., Viswanathan, V., Voss, J., Varley, J.B., Norskov, J.K., Scheffler, R., and Speidel, A., Tunneling and polaron charge transport through Li2O2 in Li–O2 batteries, J. Phys. Chem. Lett., 2013, vol. 4, p. 3494.

    Article  CAS  Google Scholar 

  123. Kang, J., Jung, Y.S., Wei, S.-H., and Dillon, A.C., Implications of the formation of small polarons in Li2O2 for Li–air batteries, Phys. Rev. B, 2012, vol. 85, p. 035210.

    Article  CAS  Google Scholar 

  124. Yuzhanina, A.V., Luk’yanicheva, V.I., Shumilova, N.A., and Bagotzky, V.S., Study of oxygen cathodic reduction mechanism at smooth platinum subjected to anodic–cathodic trearment in alkaline solution, Elektrokhimiya, 1970, vol. 6, p. 1074.

    Google Scholar 

  125. Tarasevich, M.R. and Vilinskaya, V.S., Study of parallel-sequential stages of oxygen and hydrogen peroxide reactions. VI. Oxygen and hydrogen peroxide reactions at palladium electrode in different pH solutions, Elektrokhimiya, 1972, vol. 8, p. 1489.

    CAS  Google Scholar 

  126. Jirkovsky, J.S., Subbaraman, R., Strmcnik, D., Harrison, K.L., Diesendruck, C.E., Assary, R.S., Frank, O., Kobr, L., Wiberg, G.K.H., Genorio, B., Connell, J.G., Lopes, P.P., Stamenkovic, V., Curtiss, L.A., Moore, J.S., Zavadil, K.R., and Markovic, N.M., Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media, ACS Catal., 2015, vol. 5, p. 6600.

    Article  CAS  Google Scholar 

  127. Korchagin, O.V., Tarasevich, M.R., Tripachev, O.V., and Bogdanovskaya, V.A., Catalysis of oxygen reaction on positive electrode of a lithium–oxygen cell in the presence of metallic nanosystems, Prot. Met., 2016, vol. 52, p.581.

    CAS  Google Scholar 

  128. Lu, Y.C., Gasteiger, H.A., Parent, M., Chiloyan, V., and Shao-Horn, Y., The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries batteries and energy storage, Electrochem. Solid-State Lett., 2010, vol. 13, p.69.

    Article  CAS  Google Scholar 

  129. Yang, Y., Liu, W., Wang, Y., Wang, X., Xiao, L., Lu, J., and Zhuang, L., A Pt–Ru catalyzed rechargeable oxygen electrode for Li–O2 batteries: performance improvement through Li2O2 morphology control, Phys. Chem. Chem. Phys., 2014, vol. 16, p. 20618.

    Article  CAS  PubMed  Google Scholar 

  130. Haro, M., Vicente, N., and Garcia-Belmonte, G., Oxygen reduction reaction promotes Li+ desorption from cathode surface in Li–O2 batteries, Adv. Mater. Int., 2015, vol. 2, p. 1500369.

    Article  CAS  Google Scholar 

  131. Bondue, C.J., Reinsberg, P., Abd-El-Latif, A.A., and Baltruschat, H., Oxygen reduction and oxygen evolution in DMSO based electrolytes: the role of the electrocatalyst, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 29394.

    Article  CAS  PubMed  Google Scholar 

  132. Abraham, K.M., Electrolyte-directed reactions of the oxygen electrode in lithium-air batteries, J. Electrochem. Soc., 2015, vol. 162, p. 3021.

    Article  CAS  Google Scholar 

  133. Pearson, R.G., Hard and soft acids and bases, J. Am. Chem. Soc., 1963, vol. 85, p. 3533.

    Article  CAS  Google Scholar 

  134. Linert, W., Camard, A., Armand, M., and Michot, C., Anions of low lewis basicity for ionic solid state electrolytes, Coord. Chem. Rev., 2002, vol. 226, p.137.

    Article  CAS  Google Scholar 

  135. Khetan, A., Luntz, A., and Viswanathan, V., Tradeoffs in capacity and rechargeability in nonaqueous Li–O2 batteries: solution-driven growth vs nucleophilic stability, J. Phys. Chem. Lett., 2015, vol. 6, p. 1254.

    Article  CAS  PubMed  Google Scholar 

  136. Safari, M., Adams, B.D., and Nazar, L.F., Kinetics of oxygen reduction in aprotic Li–O2 cells: a modelbased study, J. Phys. Chem. Lett., 2014, vol. 5, p. 3486.

    Article  CAS  PubMed  Google Scholar 

  137. Gallant, B.M., Mitchell, R.R., Kwabi, D.G., Zhou, J., Zuin, L., Thompson, C.V., and Shao-Horn, Y., Chemical and morphological changes of Li–O2 battery electrodes upon cycling, J. Phys. Chem. C, 2012, vol. 116, p. 20800.

    Article  CAS  Google Scholar 

  138. Black, R., Oh, S.H., Lee, J.-H., Yim, T., Adams, B., and Nazar, L.F., Screening for superoxide reactivity in Li–O2 batteries: effect on Li2O2 /LiOH crystallization, J. Am. Chem. Soc., 2012, vol. 134, p. 2902.

    Article  CAS  PubMed  Google Scholar 

  139. Lau, S. and Archer, L.A., Nucleation and growth of lithium peroxide in the Li–O2 battery, Nano Lett., 2015, vol. 15, p. 5995.

    Article  CAS  PubMed  Google Scholar 

  140. Aetukuri, N.B., McCloskey, B.D., Garcia, J.M., Krupp, L.E., Viswanathan, V., and Luntz, A.C., Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries, Nat. Chem, 2015, vol. 7, p.50.

    Article  CAS  PubMed  Google Scholar 

  141. Schwenke, K.U., Metzger, M., Restle, T., Piana, M., and Gasteiger, H.A., The influence of water and protons on Li2O2 crystal growth in aprotic Li–O2 cells, J. Electrochem. Soc., 2015, vol. 162, p.573.

    Article  CAS  Google Scholar 

  142. Che, Y., Tsushima, M., Matsumoto, F., Okajima, T., Tokuda, K., and Ohsaka, T., Water-induced disproportionation of superoxide ion in aprotic solvents, J. Phys. Chem., 1996, vol. 100, p. 20134.

    Article  CAS  Google Scholar 

  143. Meini, S., Piana, M., Tsiouvaras, N., Garsuch, A., and Gasteiger, H.A., The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li–O2 batteries, Electrochem. Solid-State Lett., 2012, vol. 15, p.45.

    Article  CAS  Google Scholar 

  144. Adams, B.D., Radtke, C., Black, R., Trudeau, M.L., Zaghib, K., and Nazar, L.F., Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge, Energy Environ. Sci., 2013, vol. 6, p. 1772.

    Article  CAS  Google Scholar 

  145. McCloskey, B.D., Bethune, D.S., Shelby, R.M., Mori, T., Scheffler, R., Speidel, A., Sherwood, M., and Luntz, A.C., Limitations in rechargeability of Li–O2 batteries and possible origins, J. Phys. Chem. Lett., 2012, vol. 3, p. 3043.

    Article  CAS  PubMed  Google Scholar 

  146. Xu, W., Hu, J., Engelhard, M.H., Towne, S.A., Hardy, J.S., Xiao, J., Feng, J., Hu, M.Y., Zhang, J., Ding, F., Gross, M.E., and Zhang, J.-G., The stability of organic solvents and carbon electrode in nonaqueous Li–O2 batteries, J. Power Sources, 2012, vol. 215, p.240.

    Article  CAS  Google Scholar 

  147. McCloskey, B.D., Scheffler, R., Speidel, A., Girishkumar, G., and Luntz, A.C., On the mechanism of non-aqueous Li–O2 electrochemistry on C and its kinetic overpotenitals: some implications for Li–air batteries, J. Phys. Chem. C, 2012, vol. 116, p. 23897.

    Article  CAS  Google Scholar 

  148. El-Latif, A.A., Bondue, C.J., Ernst, S., Hegemann, M., Kaul, J.K., Khodayari, M., Mostafa, E., Stefanova, A., and Baltruschat, H., Insights into electrochemical reactions by differential electrochemical mass spectrometry, Trends Anal. Chem., 2015, vol. 70, p.4.

    Article  CAS  Google Scholar 

  149. Bondue, C.J., Abd-El-Latif, A.A., Hegemann, P., and Baltruschat, H., Quantitative study for oxygen reduction and evolution in aprotic organic electrolytes at gas diffusion electrodes by dems, J. Electrochem. Soc., 2015, vol. 162, p.479.

    Article  CAS  Google Scholar 

  150. Lu, J. and Amine, Kh., Recent Research Progress on Non-aqueous Lithium–Air Batteries from Argonne National Laboratory., Energies, 2013,vol. 6. p. 6016.151.

    Google Scholar 

  151. Cheng, F. and Chen, J., Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts, Chem. Soc. Rev., 2012, vol. 41, p. 2172.

    Article  CAS  PubMed  Google Scholar 

  152. Mitchell, R.R., Gallant, B.M., Thompson, C.V., and Shao-Horn, Y., All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries, Energy Environ. Sci., 2011, vol. 4, p. 2952.

    Article  CAS  Google Scholar 

  153. Black, R., Lee, J.-H., Adams, B., Mims, Ch.A., and Nazar, L.F., The role of catalysts and peroxide oxidation in lithium–oxygen batteries, Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p.392.

    Article  CAS  Google Scholar 

  154. Mitchell, R.R., Gallant, B.M., Shao-Horn, Y., and Thompson, C.V., Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth, J. Phys. Chem. Lett., 2013, vol. 4, p. 1060.

    Article  CAS  PubMed  Google Scholar 

  155. Radin, M.D., Rodriguez, J.F., Tian, F., and Siegel, D.J., Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not, J. Am. Chem. Soc., 2012, vol. 134, no. 2, p. 1093.

    CAS  Google Scholar 

  156. Hummelshoj, J.S., Blomqvist, J., Datta, S., Vegge, T., Rossmeisl, J., Thygesen, K.S., Luntz, A.C., Jacobsen, K.W., and Norskov, J.K., Communications: elementary oxygen electrode reactions in the aprotic Li–air battery, J. Chem. Phys., 2010, vol. 132, p. 071101.

    Article  CAS  PubMed  Google Scholar 

  157. Garcia-Lastra, J.M., Bass, J.D., and Thygesen, K.S., Strong excitonic and vibronic effects determine the optical properties of Li2O2, J. Chem. Phys., 2011, vol. 135, p. 121101.

    Article  CAS  PubMed  Google Scholar 

  158. Tian, F., Radin, M.D., and Siegel, D.J., Enhanced charge transport in amorphous Li2O2, Chem. Mater., 2014, vol. 26, p. 2952.

    Article  CAS  Google Scholar 

  159. Mo, Y., Ong, Sh.P., and Ceder, G., First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery, Phys. Rev. B, 2011, vol. 84, p. 205446.

    Article  CAS  Google Scholar 

  160. Garcia-Lastra, J.M., Myrdal, J.S.G., Christensen, R., Thygesen, K.S., and Vegge, T., Dft+u study of polaronic conduction in Li2O2 and Li2Co3: implications for Li–air batteries, J. Phys. Chem. C, 2013, vol. 117, p. 5568.

    Article  CAS  Google Scholar 

  161. Hummelshoj, J.S., Luntz, A.C., and Norskov, J.K., Theoretical evidence for low kinetic overpotentials in Li–O2 electrochemistry, J. Chem. Phys., 2013, vol. 138, p. 03470.

    Article  CAS  Google Scholar 

  162. McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., and Luntz, A.C., Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry, J. Phys. Chem. Lett., 2011, vol. 2, p. 1161.

    Article  CAS  PubMed  Google Scholar 

  163. Fan, W., Cui, Zh., and Guo, X., Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li–O2 cells, J. Phys. Chem. C, 2013, vol. 117, p. 2623.

    Article  CAS  Google Scholar 

  164. Lu, Y.-Ch., Kwabi, D.G., Yao, K.P.C., Harding, J.R., Zhou, J., Zuin, L., and Shao-Horn, Y., The discharge rate capability of rechargeable Li–O2 batteries, Energy Environ. Sci., 2011, vol. 4, p. 2999.

    Article  CAS  Google Scholar 

  165. Xu, D., Wang, Zh.-L., Xu, J.-J., Zhang, L.-L., and Zhang, X.-B., Novel dmso-based electrolyte for high performance rechargeable Li–O2 batteries, Chem. Commun., 2012, vol. 48, p. 6948.

    Article  CAS  Google Scholar 

  166. Das, U., Lau, K.Ch., Redfern, P.C., and Curtiss, L.A., Structure and stability of lithium superoxide clusters and relevance to Li–O2 batteries, J. Phys. Chem. Lett., 2014, vol. 5, p.813.

    Article  CAS  PubMed  Google Scholar 

  167. Tarasevich, M.R., Processes at oxygen electrode of fuel cell, Doctoral (Chem.) Dissertation, Moscow: IELAN SSSR, 1971.

    Google Scholar 

  168. Li, J., Zhao, Y., Zou, M., Wu, C., Huang, Z., and Guan, L., An effective integrated design for enhanced cathodes of Ni foam-supported Pt/carbon nanotubes for Li–O2 batteries, Appl. Mater. Int., 2014, vol. 6, p. 12479.

    Article  CAS  Google Scholar 

  169. Sun, B., Munroe, P., and Wang, G., Ruthenium nanocrystals as cathode catalysts for lithium–oxygen batteries with a superior performance, Sci. Reports, 2013, p. 2247.

    Google Scholar 

  170. Lei, Y., Lu, J., Luo, X., Wu, T., Du, P., Zhang, X., Ren, Y., Wen, J., Miller, D.J., Miller, J.T., Sun, Y.-K., Elam, J.W., and Amine, K., Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium–O2 battery, Nano Lett., 2013, vol. 13, p. 4182.

    Article  CAS  PubMed  Google Scholar 

  171. Lu, Y.-Ch. and Shao-Horn, Y., Probing the reaction kinetics of the charge reactions of nonaqueous Li–O2 batteries, J. Phys. Chem. Lett., 2013, vol. 4, p.93.

    Article  CAS  PubMed  Google Scholar 

  172. Chase, G.V., Zecevic, S., Walker, W., Uddin, J., Sasaki, K.A., Vyacheslav, V., Blanco, M., and Addison, D., Pat. US no. 13093759, 2011.

  173. Chen, Y., Freunberger, S.A., Peng, Z., Fontaine, O., and Bruce, P.G., Charging a Li–O2 battery using a redox mediator, Nature Chem., 2013, vol. 5, p.489.

    Article  CAS  Google Scholar 

  174. Matsuda, S., Hashimoto, K., and Nakanishi, S., Efficient Li2O2 formation via aprotic oxygen reduction reaction mediated by quinone derivatives, J. Phys. Chem. C, 2014, vol. 118, p. 18397.

    Article  CAS  Google Scholar 

  175. Lacey, M.J., Frith, J.T., and Owen, J.R., A redox shuttle to facilitate oxygen reduction in the lithium–air battery, Electrochem. Commun., 2013, vol. 26, p.74.

    Article  CAS  Google Scholar 

  176. Sun, D., Shen, Y., Zhang, W., Yu, L., Yi, Z., Yin, W., Wang, D., Huang, Y., Wang, J., Wang, D., and Goodenough, J.B., A solution-phase bifunctional catalyst for lithium–oxygen batteries, J. Am. Chem. Soc., 2014, vol. 136, p. 8941.

    Article  CAS  PubMed  Google Scholar 

  177. Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., and Addison, D., A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte, J. Am. Chem. Soc., 2013, vol. 135, p. 2076.

    Article  CAS  PubMed  Google Scholar 

  178. Uddin, J., Bryantsev, V.S., Giordani, V., Walker, W., Chase, G.V., and Addison, D., Lithium nitrate as regenerable SEI stabilizing agent for rechargeable Li–O2 batteries, J. Phys. Chem. Lett., 2013, vol. 4, p. 3760.

    Article  CAS  Google Scholar 

  179. Bergner, B.J., Hofmann, C., Schurmann, A., Schroder, D., Peppler, K., Schreinerb, P.R., and Janek, J., Understanding the fundamentals of redox mediators in Li–O2 batteries: a case study on nitroxides, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 31769.

    Article  CAS  PubMed  Google Scholar 

  180. Aurbach, D., Hirshberg, D.H., Sharon, D., Afri, M., Garsuch, A., and Frimer, A.A., The Catalytic Behavior of Lithium Nitrate in Li–O, 227th ECS Meeting Abstracts, 2015, p.249.

    Google Scholar 

  181. Burke, C.M., Pande, V., Khetan, A., Viswanathan, V., and McCloskey, B.D., Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity, Proc. Nat. Acad. Sci. U.S.A., 2015, vol. 112, p. 9293.

    Article  CAS  Google Scholar 

  182. Liu, T., Leskes, M., Yu, W., Moore, A.J., Zhou, L., Bayley, P.M., Kim, G., and Grey, C.P., Cycling Li–O2 batteries via LiOH formation and decomposition, Science, 2015, vol. 350, p.530.

    Article  CAS  PubMed  Google Scholar 

  183. Davydova, E.S. and Tarasevich, M.R., Studies of selectivity of oxygen reduction reaction in acidic electrolyte on electrodes modified by products of pyrolysis of polyacrylonitrile and metalloporphyrins, Russ. J. Electrochem., 2016, vol. 52, p. 1131.

    Article  CAS  Google Scholar 

  184. Luntz, A.C., McCloskey, B.D., Gowda, S., Horn, H., and Viswanathan, V., in: The Lithium-Air Battery: Fundamentals, Imanishi, N., Luntz, A.C., and Bruce, P.G., Eds., New York: Springer, 2014, p.103.

  185. Zhao, G., Niu, Y., Zhang, L., and Sun, K., Ruthenium oxide modified titanium dioxide nanotube arrays as carbon and binder free lithium–air battery cathode catalyst, J. Power Sources, 2014, vol. 270, p.386.

    Article  CAS  Google Scholar 

  186. Jian, Z., Liu, P., Li, F., He, P., Guo, X., Chen, M., and Zhou, H., Core-shell-structured CNT@RuO2 composite as a high-performance cathode catalyst for rechargeable Li–O2 batteries, Angew. Chem., Int. Ed. Engl., 2014, vol. 53, p. 442.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Korchagin.

Additional information

Original Russian Text © M.R. Tarasevich, O.V. Korchagin, O.V. Tripachev, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 1, pp. 3–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasevich, M.R., Korchagin, O.V. & Tripachev, O.V. Comparative Study of Special Features of the Oxygen Reaction (Molecular Oxygen Ionization and Evolution) in Aqueous and Nonaqueous Electrolyte Solutions (a Review). Russ J Electrochem 54, 1–19 (2018). https://doi.org/10.1134/S1023193518010093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518010093

Keywords

Navigation