Skip to main content
Log in

Voltammetric Characterization of Grafted Polymer Modified with ZnO Nanoparticles on Glassy Carbon Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, a grafted polymer (GP) with ZnO nanoparticles (GP/ZnO NPs) was attached on the surface of glassy carbon electrode (GCE), in order to produce a new modified electrode (GP/ZnO NPs-GCE). The gamma irradiation method was used to grafted polystyrene (polymer) with acrylonitrile (monomer), while slow evaporation process was used to prepare the new modified electrode. The cyclic voltammetry (CV) of K4[Fe(CN)6] was used to study the electrochemical properties GP/ZnO NPs-GCE. The peak separation (ΔEpa-c) was 500 mV between the redox peaks of Fe(II)/Fe(III) in an aqueous solution of 1 M KCl and the current ratio of redox current peaks (Ipa/Ipc) was ≈ 1 for the modified electrode. This indicated that the modified electrode has s good reversibility and conductivity, wherefore; it was applied in the voltammetric filed. It was found that the modified electrode GP/ZnO NPs-GCE have a reasonable solubility and stability at various pH medium. Additionally, the sensitivity of the electrochemical analysis by cyclic voltammetric (CV) method is extensively subjected to the pH medium and the scan rate (SR). A couple of redox current peaks of K4[Fe(CN)6] in KCl solution was observed with a reversible process: Fe3+/Fe2+. Finally a good diffusion coefficient of electroactive species (D) for the new modified electrode was found in this study by chronoamperometry method using Cottrell equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Radhi, M.M., Tan, W.T., Ab Rahman, M.Z.B., and Kassim, A.B., Electrochemical characterization of the redox couple of [Fe(CN)6]3–Fe(CN)6]4–mediated by a graft polymer modified glassy carbon electrode, J. Chem. Eng. Jpn., 2010, vol. 43, pp. 927–931.

    Article  CAS  Google Scholar 

  2. Labaye, D.E., Jerome, C., Gueskin, V.M., Louette, P., Lazzaroni, R., Martinot, L., and Jerome, R., Full electrochemical synthesis of conducting polymer films chemically graft to conducting surfaces, J. Am. Chem. Soc., 2002, vol. 18, pp. 5222–5230.

    CAS  Google Scholar 

  3. Peter, M.L., Rob, G.H., Hempenius, M.A., and Vancso, J., Electrochemistry of surface-graft stimulusresponsive monolayers of poly(ferrocenyldimethylsilane) on gold, Langmuir, 2005, vol. 21, pp. 5115–5123.

    Article  CAS  Google Scholar 

  4. Chuy, C., Ding, J., Swanson, E., Holdcroft, S., Horsfall, J., and Lovell, K.V., Conductivity and electrochemical ORR mass transport properties of solid polymer electrolytes containing poly(styrene sulfonic acid) graft chains, J. Electrochem. Soc., 2003, vol. 150, pp. 271–279.

    Article  Google Scholar 

  5. Radhi, M.M., Tan, W.T., and Haider, A.J., Electrochemical characterization of the redox couple of Fe(II)/Fe(III) mediated by a graft polymer electrode in nonaqueous electrolyte, Int. J. Electrochem. Sci., 2012, vol. 7, pp. 1–10.

    Google Scholar 

  6. Xiong, H.-M., Wang, Z.-D., Xie, D.-P., Cheng, L., and Xa, Y.-Y., Stable polymer electrolytes based on polyether-graft ZnO nanoparticles for all-solid-state lithium batteries, J. Mater. Chem., 2006, vol. 16, pp. 1345–1349.

    Article  CAS  Google Scholar 

  7. Idris, M.R. and Quayum, E.M., Preparation of ZnO nanoparticles and its electrochemical studies, Nano Vision, 2013, vol. 2, pp. 76–83.

    Google Scholar 

  8. Ramanavicius, A., Oztekin, Y., Balevicius, Z., Kausaite-Mikstimiene, A., Krikstolaityte, V., Baleviciute, I., Ratautaite, V., and Ramanaviciene, A., Conducting and electrochemically generated polymers in sensor design, Procedia Eng., 2012, vol. 47, pp. 825–828.

    Article  CAS  Google Scholar 

  9. Starowicz, M. and Stypula, B., Electrochemical synthesis of ZnO nanoparticles, Eur. J. Inorg. Chem., 2008, vol. 6, pp. 869–872.

    Article  Google Scholar 

  10. Xiong, H.-M., Liu, D.-P., Xia, Y.-Y., and Chen, J.-Sh., Polyether-graft ZnO nanoparticles with tunable and stable photoluminescence at room temperature, Chem. Mater., 2005, vol. 12, pp. 3062–3064.

    Article  Google Scholar 

  11. Fang, L., Zhang, B., Li, W., Zhang, J., Huang, K., and Zhang, Q., Fabrication of highly dispersed ZnO nanoparticles embedded in graphene nanosheets for high performance supercapacitors, Electrochim. Acta, 2014, vol. 148, pp. 164–169.

    Article  CAS  Google Scholar 

  12. Hong, R.Y., Chen, L.L., Li, J.H., Zheng, Y., and Ding, J., Preparation and application of polystyrenegraft ZnO nanoparticles, Polym. Adv. Technol., 2007, vol. 18, pp. 901–909.

    Article  CAS  Google Scholar 

  13. Achilleos, D.S. and Vamvakaki, M., End-graft polymer chains onto inorganic nano-objects, Materials, 2010, vol. 3, pp. 1981–2026.

    Article  CAS  Google Scholar 

  14. Li, Sh., Lin, M.M., Toprak, M.S., Kim, D.K., and Muhammed, M., Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications, Nano Rev., 2010, vol. 1, pp. 1–19.

    Article  Google Scholar 

  15. El-Said, W.A. and Choi, J.-W., Electrochemical biosensor consisted of conducting polymer layer on gold nanodots patterned indium tin oxide electrode for rapid and simultaneous determination of purine bases, Electrochim. Acta, 2014, vol. 123, pp. 51–57.

    Article  CAS  Google Scholar 

  16. Radhi, M.M., Al-Damlooji, N.K., Radhi Jobayr, M., and Dawood, D.S., Electrochemical sensors of cyclic voltammetry to detect Cd(II) in blood medium, sensors, Transducers, 2013, vol. 155, pp. 150–154.

    CAS  Google Scholar 

  17. Tan, W.T., Radhi, M.M., Rahman, M.Z.B., and Kassim, A., Synthesis and characterization of graft polystyrene with acrylonitrile using gamma-irradiation, J. Appl. Sci., 2010, vol. 10, pp. 139–144.

    Article  CAS  Google Scholar 

  18. Tan, W.T., Farhan, Y., and Zulkarnain, Z., Electrochemical reduction of potassium ferricyanide mediated by magnesium diboride modified carbon electrode, Sensors Transducers J., 2009, vol. 104, pp. 119–127.

    CAS  Google Scholar 

  19. Bard, A.J. and Larry, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2000.

    Google Scholar 

  20. Zhang, J., Electrochemical methods: Fundamental and applications, Electro Anal. Chem., 1972, vol. 331, pp. 945–957.

    Article  Google Scholar 

  21. Instruction Manual, CV 50W, ver. 2, West Lafayette: Bioanalytical System, 1996.

  22. Radhi, M.M., Amir, Y.K.A., Alwan, S.H., and Tee, T.W., Electrochemical effect of different modified glassy carbon electrodes on the values of diffusion coefficient for some heavy metal ions, J. Phys.: Conf. Ser., 2013, vol. 431, pp. 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas K. Mohamad Alosfur.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 1, pp. 33–39.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhi, M.M., Alosfur, F.K.M. & Ridha, N.J. Voltammetric Characterization of Grafted Polymer Modified with ZnO Nanoparticles on Glassy Carbon Electrode. Russ J Electrochem 54, 27–32 (2018). https://doi.org/10.1134/S1023193518010068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518010068

Keywords

Navigation