Skip to main content
Log in

The Effect of Electrochemical Modification of Activated Carbons by Polypyrrole on Their Structure Characteristics, Composition of Surface Compounds, and Adsorption Properties

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical modification of activated carbons (AC) by a conducting polymer polypyrrole (PPy) has a substantial effect on the AC structure characteristics, electrochemical properties, and adsorption activity with respect to natural substances (by the example of free hemoglobin). Using the method of standard contact porosimetry (SCP), the porous structure and hydrophilic–hydrophobic properties are studied for the activated carbon SKT-6A, the [SKT-6A/PPy/Cl] composite, and individual polypyrrole. The chemistry of the activated carbon surface is studied by the standardized Boehm method. It is shown that the nature of activated carbon and its initial surface substantially affect the character of its interaction with the conducting polymer polypyrrole. The effect of such modification on the AC surface chemistry should be considered in aggregate by taking into account each component of such modification. The increase in the sorption ability of [AC/PPy/Cl] composites with respect to hemoglobin is largely associated with the stronger hydrophilicity of polypyrrole as compared with activated carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bansal, R.C. and Goyal, M., Activated carbon adsorption, Boca Raton: CRC Press, 2005.

    Book  Google Scholar 

  2. Boehm, H.P., Chemical identification of surface groups, in Advances of Catalysis and Related Subjects, vol. 16, New York: Academic Press, 1966, p. 179; translated into Russian.

    Article  CAS  Google Scholar 

  3. Chang, C.H., Preparation and characterization of carbon- sulfur surface compounds, Carbon, 1981, vol. 19, p. 175.

    Article  CAS  Google Scholar 

  4. Frumkin, A.N., Potentsialy nulevogo zaryada (Potentials of Zero Charge), Moscow: Nauka, 1982.

    Google Scholar 

  5. Dubinin, M.M., Microporous structure of carbon adsorbents. Part I. General characteristic of micro and supermicropores for the slot-like model, Izv. Akad. Nauk SSSR, Ser. Khim., 1979, no. 8, p. 1691.

    Google Scholar 

  6. Volfkovich, Yu.M., Bagotskii, V.S., Sosenkin, V.E., and Shkolnikov, E.I., Methods of standard porosimetry and their possible application in electrochemistry, Elektrokhimiya, 1980, vol. 16, p. 1620.

    CAS  Google Scholar 

  7. Volfkovich, Yu.M., Bagotsky, V.S., Sosenkin, V.E., and Blinov, I.A., The standard contact porosimetry, Colloids Surf. A, 2001, vol. 187, p. 349.

    Article  Google Scholar 

  8. Volfkovich, Y.M., Bograchev, D.A., Mikhailin, A.A., and Bagotzky, V.S., Supercapacitor carbon electrodes with high capacitance, J. Solid State Electrochem., 2014, vol. 18, p. 1351.

    Article  CAS  Google Scholar 

  9. Afkhami, A. and Conway, B.E., Investigation of removal of Cr(VI), Mo(VI), W(VI), V(IV), and V(V) oxy-ions from industrial waste-waters by adsorption and electrosorption at high-area carbon cloth, J. Colloid Interface Sci., 2002, vol. 251, p. 248.

    Article  CAS  PubMed  Google Scholar 

  10. Ayranci, E. and Conway, B.E., Removal of phenol, phenoxide and chlorophenols from waste-waters by adsorption and electrosorption at high-area carbon felt electrodes, J. Electroanal. Chem., 2001, vol. 513, p. 100.

    Article  CAS  Google Scholar 

  11. Volfkovich, Yu. M. and Sosenkin, V.E., Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics, Russ. Chem. Rev., 2012, vol. 81, no. 10, p. 936.

    Article  CAS  Google Scholar 

  12. Volfkovich, Yu.M., Filippov, A.N., and Bagotsky, V.S., Structural properties of porous materials and powders used in different fields of science and technology, London: Springer, 2014.

    Book  Google Scholar 

  13. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., Structural and wetting properties of fuel cell components, J. Power Sources, 2010, vol. 195, p. 5429.

    Article  CAS  Google Scholar 

  14. Rouquerol, J., Baron, G., Denoyel, R., Giesche, H., Groen, J., Klobes, P., Levitz, P., Neimark, A.V., Rigby, S., Skudas, R., Sing, K., Thommes, M., and Unger, K., Liquid intrusion and alternative methods for the characterization of macroporous materials, Pure Appl. Chem., 2011, vol. 84, p. 107.

    Article  CAS  Google Scholar 

  15. Goldin, M.M., Volkov, A.G., and Namychkin, D.N., Adsorption of copper, silver, and zinc cations on polarized activated carbons, J. Electrochem. Soc., 2005, vol. 152, p. E167.

    Article  CAS  Google Scholar 

  16. Oren, Y., Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review), Desalination, 2008, vol. 228, p. 10.

    Article  CAS  Google Scholar 

  17. Avraham, E., Noked, M., Bouhadana, Y., Soffer, A., and Aurbach, D., Limitations of charge efficiency in capacitive deionization. II. On the behavior of CDI cells comprising two activated carbon electrodes, J. Electrochem. Soc., 2009, vol. 156, p. 157.

    Article  CAS  Google Scholar 

  18. Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G., and Stadermann, M., Capacitive desalination with flow-through electrodes, Energy Environ. Sci., 2012, vol. 5, p. 9511.

    Article  CAS  Google Scholar 

  19. Volfkovich, Yu.M., Bograchev, D.A., Rychagov, A.Yu., Mikhalin, A.A., and Sosenkin, V.E., Capacitive deionization of aqueous solutions. experiments and modeling of the process in static cell, Proc. Int. Conference “Ion transport in organic and inorganic membranes”, Sochi, 2016, p. 298.

    Google Scholar 

  20. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications, NewYork: Springer Science/Business Media, 1999.

    Book  Google Scholar 

  21. Volfkovich, Y.M. and Serdyuk, T.M., Electrochemical capacitors, Russ. J. Electrochem., 2002, vol. 38, p. 935.

    Article  CAS  Google Scholar 

  22. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors, Hoboken: John Wiley, 2015, p. 372.

    Google Scholar 

  23. Tarasevich, M.R., Goldin, M.M., Luzhnikov, E.A., and Bogdanovskaya, V.A., Electrochemically controlled hemosorption, Itogi Nauki Tekhn., Ser. Elektrokhimiya., 1990, vol. 31, p. 127.

    CAS  Google Scholar 

  24. Luzhnikov, E.A., Goldin, M.M., and Suslova, I.M., Sorbent potential and safety of blood corpuscles, Farmatsiya, 1980, vol. 3, p. 65.

    Google Scholar 

  25. Goldin, M.M., Luzhnikov, E.A., and Suslova, I.M., The effect of electrochemical characteristics of sorbent on the content of blood corpuscles at hemosorption, Elektrokhimiya, 1980, vol. 15, p. 1667.

    Google Scholar 

  26. Goldin, M.M. and Luzhnikov, E.A., On the effect of sorbent potential on the sorption of toxic compounds, Elektrokhimiya, 1979, vol. 15, p. 1419.

    CAS  Google Scholar 

  27. Lopukhin, Yu.M. and Molodenkov, M.N., Gemosorbtsiya (Hemosprption), Moscow: Meditsina, 1985.

    Google Scholar 

  28. Sugiyama, M. and Nagatsuma, Y., Method for absorbing free hemoglobin from blood, US Patent 4952322, 1990.

    Google Scholar 

  29. Bakalinskaya, O.N., Koval’, N.M., and Kartel’, N.T., Biospecific adsorbents for removal of free hemoglobin, Efferentnaya Terapiya, 1999, no. 3, p. 33.

    Google Scholar 

  30. Khubutiya, M.Sh., Tsivadze, A.Yu., Garaeva, G.R., Andreev, V.N., and Goldin, M.M., Adsorption of free hemoglobin by electrochemically modified activated carbons. Part 2. Blood plasma, Macroheterocycles, 2012, vol. 5, nos. 4–5, p. 327.

    Article  CAS  Google Scholar 

  31. Khubutiya, M.Sh., Goldin, M.M., Stepanov, A.A., Kolesnikov, V.A., and Kruglikov, S.S., The effect of electrochemically polymerized pyrrole on the physicochemical properties and biological activity of carbon materials, Carbon, 2012, vol. 50, p. 1146.

    Article  CAS  Google Scholar 

  32. Volfkovich, Y.M., Mikhalin, A.A., and Rychagov, A.Yu., Surface conductivity measurements for porous carbon electrodes, Russ. J. Electrochem., 2003, vol. 49, p. 594.

    Article  CAS  Google Scholar 

  33. Rychagov A.Y. and Volfkovich Y.M., Low-reversible charging processes on highly dispersed carbon electrodes, Russ. J. Electrochem., 2009, vol. 45, p. 323.

    Article  CAS  Google Scholar 

  34. Khubutiya, M.Sh., Tsivadze, A.Yu., Garaeva, G.R., Andreev, V.N., and Goldin, M.M., Adsorption of free hemoglobin by electrochemically modified activated carbon. Part 1. Aqueous solutions, Macroheterocycles, 2012, vol. 5, p. 321.

    Article  CAS  Google Scholar 

  35. Goertzen, S.L., Theriault, K.D., Oickle, A.M., Tarasuk, A.C., and Andreas, H.A., Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon, 2010, vol. 48, p. 1252.

    Article  CAS  Google Scholar 

  36. Oickle, A.M., Goertzen, S.L., Hopper, K.R., Abdalla, Y.O., and Andreas, H.A., Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant, Carbon, 2010, vol. 48, p. 3313.

    Article  CAS  Google Scholar 

  37. Boehm, H.P., Chemical identification of surface groups, in Advances of Catalysis and Related Subjects, vol. 16, New York: Academic Press, 1966, p. 179.

    Article  CAS  Google Scholar 

  38. Harboe, M., A method for determination of hemoglobin in plasma by near-ultraviolet spectrophotometry, Scand. J. Clin. Lab. Invest., 1959, vol. 11, p. 66.

    Article  CAS  PubMed  Google Scholar 

  39. Mukhin, V.M., Tarasov, A.V., and Klushin, V.N., Aktivnye ugli Rossii (Active Carbons of Russia), Moscow: Metallurgiya, 2000.

    Google Scholar 

  40. Electroanalytical Methods. Guide to Experiments and Applications, Scholtz, F., Ed., Heidelberg: Springer, 2002.

  41. Volfkovich, Yu.M., Mikhailin, A.A., Bograchev, D.A., Sosenkin, V.E., and Bagotsky, V.S., Studies of super capacitor carbon electrodes with high pseudocapacitance, in Recent Trend in Electrochemical Science and Technology, Ujjal, K.S., Ed., INTECH Open Access Publisher, 2012, p. 159.

    Google Scholar 

  42. Rychagov, A.Yu., Volfkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, L.D., Konev, D.V., Krestinin, N.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Promising electrode materials for supercapacitors, Electrokhim. Energ., 2012, vol. 12, p. 167.

    CAS  Google Scholar 

  43. Zou, W.J., Mo, S.S., Zhou, S.L., Zhou, T.X., Xia, N.N., and Yuan, D.S., Preparation of mesoporous carbon/ polypyrrole composite materials and their supercapacitive properties, J. Electrochem. Sci. Eng., 2011, vol. 1, p. 67.

    Google Scholar 

  44. Pacheco-Catalán, D.E., Smit, M.A., and Morales, E., Characterization of composite mesoporous carbon/ conducting polymer electrodes prepared by chemical oxidation of gas-phase absorbed monomer for electrochemical capacitors, Int. J. Electrochem. Sci., 2011, vol. 6, p. 78.

    Google Scholar 

  45. Münstedt, H., Properties of polypyrroles treated with base and acid, Polymer, 1986, vol. 27, p. 899.

    Article  Google Scholar 

  46. Li, Y. and Qian, R., Studies on the chemical compensation of conducting polypyrrole by NaOH solution, Synth. Met., 1988, vol. 26, p. 139.

    Article  CAS  Google Scholar 

  47. Werner, W. and Wegner, G., Electrochemistry of thin polypyrrole films, Makromol. Chem., 1987, vol. 188, p. 1465.

    Article  Google Scholar 

  48. Pei, Q. and Qian, R., Protonation and deprotonation of polypyrrole chain in aqueous solutions, Synth. Met., 1991, vol. 45, p. 35.

    Article  CAS  Google Scholar 

  49. Zhang, X. and Bai, Surface electric properties of polypyrrole in aqueous solutions, Langmuir, 2003, vol. 19, p. 10703.

    Article  CAS  Google Scholar 

  50. Wegner, G., Wernet, W., Glatzhofer, D.T., Ulanski, J., Krohnke, Ch., and Mohammadi, M., Chemistry and conductivity of some salts of polypyrrole, Synth. Met., 1987, vol. 18, p. 1.

    Article  CAS  Google Scholar 

  51. Ansari, R., Polypyrrole conducting electroactive polymers: synthesis and stability studies, J. Clim., 2006, vol. 3, p. 186.

    CAS  Google Scholar 

  52. Papadopoulos, S., Jürgens, K.D., and Gros, G., Protein diffusion in living skeletal muscle fibers: dependence on protein size, fiber type, and contraction, Biophys. J., 2000, vol. 79, p. 2084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Goldin.

Additional information

Original Russian Text © Yu.M. Volfkovich, I.V. Goroncharovskaya, A.K. Evseev, V.E. Sosenkin, M.M. Goldin, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 12, pp. 1517–1528.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volfkovich, Y.M., Goroncharovskaya, I.V., Evseev, A.K. et al. The Effect of Electrochemical Modification of Activated Carbons by Polypyrrole on Their Structure Characteristics, Composition of Surface Compounds, and Adsorption Properties. Russ J Electrochem 53, 1334–1344 (2017). https://doi.org/10.1134/S1023193517120126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517120126

Keywords

Navigation