Skip to main content
Log in

In-situ Study the Corrosion Degradation Mechanism of Tinplate in Salty Water by Scanning Electrochemical Microscopy

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the corrosion degradation of tinplate in contact with salty water is investigated by scanning electrochemical microscopy (SECM) electrochemical impedance spectroscopy (EIS). Experimental results indicate tin maintains at passive state during the exposure; however, pores and defects existed in tin coating leads to an exposure of carbon steel substrate to the electrolyte, in which localized corrosion tends to occur within the pore. A phenomenological model is proposed to interpret corrosion mechanism of tinplate in contact with salty food based on the proposed electrochemical equivalent circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herting, G., Odnevall Wallinder, I., and Leygraf, C., Corrosion-induced release of chromium and iron from ferritic stainless steel grade AISI 430 in simulated food contact, J. Food Eng., 2008, vol. 87, pp. 291–300.

    Article  CAS  Google Scholar 

  2. Waters, B.W., Tatum, J.M., and Hung, Y.-C., Effect of chlorine-based sanitizers properties on corrosion of metals commonly found in food processing environment, J. Food Eng., 2014, vol. 121, pp. 159–165.

    Article  CAS  Google Scholar 

  3. Xia, D.H. et al., Fast evaluation of degradation degree of organic coatings by analyzing electrochemical impedance spectroscopy data, Trans. Tianjin Univ., 2012, vol. 18, pp. 15–20.

    Article  CAS  Google Scholar 

  4. Xia, D.H. et al., Corrosion behavior of novolac epoxy coated tinplate in energy drink, J. Tianjin Univ., 2012, vol. 46, pp. 503–509.

    Google Scholar 

  5. Xia, D.H. et al., Corrosion behavior of tinplate in NaCl solution, Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 717–724.

    Article  Google Scholar 

  6. Chiavari, C. et al., Influence of low-temperature carburising on metal release from AISI316L austenitic stainless steel in acetic acid, J. Food Eng., 2014, vol. 137, pp. 7–15.

    Article  CAS  Google Scholar 

  7. Martins, J.I., Corrosion problems in tinplate cans for storing contact glues for shoes, Eng. Failure Analysis, 2012, vol. 26, pp. 258–265.

    Article  CAS  Google Scholar 

  8. Huang, X.-q. et al., Effects of reflowing temperature and time on alloy layer of tinplate and its electrochemical behavior in 3.5% NaCl solution, Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 1978–1988.

    Article  CAS  Google Scholar 

  9. Blunden, S. and Wallace, T., Tin in canned food: a review and understanding of occurrence and effect, Food Chem. Toxicol., 2003, vol. 41, pp. 1651–1662.

    Article  CAS  Google Scholar 

  10. Boogaard, P.J. et al., Comparative assessment of gastrointestinal irritant potency in man of tin(II) chloride and tin migrated from packaging, Food Chem. Toxicol., 2003, vol. 41, pp. 1663–1670.

    Article  CAS  Google Scholar 

  11. Pournaras, A.V. et al., Evaluation of lacquered tinplated cans containing octopus in brine by employing X-ray microanalysis and electrochemical impedance spectroscopy, J. Food Eng., 2008, vol. 86, pp. 460–464.

    Article  CAS  Google Scholar 

  12. Esteves, L. et al., Electrochemical study of corrosion in aluminium cans in contact with soft drinks, Corros. Eng., Sci. Technol., 2014, vol. 49, pp. 665–668.

    Article  CAS  Google Scholar 

  13. Xia, D. et al., Detection of corrosion-induced metal release from tinplate cans using a novel electrochemical sensor and inductively coupled plasma mass spectrometer, J. Food Eng., 2012, vol. 113, pp. 11–18.

    Article  CAS  Google Scholar 

  14. Zheng, X. et al., Detection of the corrosion degree of beverage cans using a novel electrochemical sensor, Anti-Corros. Methods Mater., 2013, vol. 60, pp. 153–159.

    Article  CAS  Google Scholar 

  15. Xia, D.H. et al., A novel electrochemical noise sensor applied to detect food safety, Russ. J. Electrochem., 2014, vol. 50, pp. 599–602.

    Article  CAS  Google Scholar 

  16. Xia, D.H., Song, S.Z., and Behnamian, Y., Detection of corrosion degradation using electrochemical noise (EN): Review of signal processing methods for identifying corrosion forms, Corros. Eng., Sci. Technol., 2016, vol. 51, pp. 527–544.

    Article  CAS  Google Scholar 

  17. Wei, Y.-J., Xia, D.-H., and Song, S.-Z., Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis, Russ. J. Electrochem., 2016, vol. 52, pp. 560–575.

    Article  Google Scholar 

  18. Sánchez, M. et al., Assessment of the electrochemical microcell geometry by local electrochemical impedance spectroscopy of copper corrosion, Electrochim. Acta, 2012, vol. 62, pp. 276–281.

    Article  Google Scholar 

  19. Xia, D.-H. et al., Understanding the interaction of thiosulfate with Alloy 800 in aqueous chloride solutions using SECM, J. Electroanal. Chem., 2015, vol. 744, pp. 77–84.

    Article  CAS  Google Scholar 

  20. Xia, D.-H. et al., Semiconductivity conversion of passive films on Alloy 800 in chloride solutions containing various concentrations of thiosulfate, J. Electrochem. Soc., 2015, vol. 162, pp. C482–C486.

    Article  CAS  Google Scholar 

  21. Zhu, R.K. and Luo, J.L., Investigation of stressenhanced surface reactivity on Alloy 800 using scanning electrochemical microscopy, Electrochem. Commun., 2010, vol. 12, pp. 1752–1755.

    Article  CAS  Google Scholar 

  22. Xia, D.H. et al., Hydrogen-enhanced surface reactivity of X80 pipeline steel observed by scanning electrochemical microscopy, Electrochemistry, 2016, vol. 84, pp. 238–242.

    Article  CAS  Google Scholar 

  23. Song, S., Research Technology of Corosion Electrochemical, Beijing: Chemical Industry Press, 1988, p. 16.

    Google Scholar 

  24. Reddy, B., Breakdown of organic coatings in corrosive environments examined by scanning kelvin probe and scanning acoustic microscopy, Electrochim. Acta, 2004, vol. 49, pp. 2965–2972.

    Article  CAS  Google Scholar 

  25. Ma, Y.T., Li, Y., and Wang, F.H., Corrosion of low carbon steel in atmospheric environments of different chloride content, Corros. Sci., 2009, vol. 51, pp. 997–1006.

    Article  CAS  Google Scholar 

  26. Xiao, K. et al., Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel, J. Iron Steel Res. Int., 2008, vol. 15, pp. 42–48.

    Article  CAS  Google Scholar 

  27. George, K.S. and Nesic, S., Investigation of carbon dioxide corrosion of mild steel in the presence of acetic acid, Part 1: Basic mechanisms, Corrosion, 2007, vol. 63, pp. 178–186.

    Article  CAS  Google Scholar 

  28. Perez, F.R. et al., Effects of chloride concentration, immersion time and steel composition on the spinel phase formation, Mater. Chem. Phys., 2009, vol. 117, pp. 214–223.

    Article  CAS  Google Scholar 

  29. El-Mahdy, G.A., Nishikata, A., and Tsuru, T., Electrochemical corrosion monitoring of galvanized steel under cyclic wet-dry conditions, Corros. Sci., 2000, vol. 42, pp. 183–194.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Hai Xia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Zhou, B., Xia, DH. et al. In-situ Study the Corrosion Degradation Mechanism of Tinplate in Salty Water by Scanning Electrochemical Microscopy. Russ J Electrochem 54, 216–223 (2018). https://doi.org/10.1134/S1023193517120060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517120060

Keywords

Navigation