Skip to main content
Log in

Bioelectrocatalytic Oxygen Reduction by Laccase Immobilized on Various Carbon Carriers

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Laccase is an enzyme that is used for fabricating cathodes of biofuel cells. Many studies have been aimed at searching the ways for enhancing specific electrochemical characteristics of cathode with the laccase- based catalyst. The electroreduction of oxygen on the electrode with immobilized laccase proceeds under the conditions of direct electron transfer between the electrode and active enzyme center. In this work, the effect of oxygen partial pressure on the electrocatalytic activity of laccase is studied. It is shown that, at the concentrations of oxygen dissolved in the electrolyte higher than 0.28 mM, the process is controlled by the kinetics of the formation of laccase–oxygen complex, whereas at lower concentrations and a polarization higher than 0.3 V, the process is limited by the oxygen diffusion. A wide range of carbon materials are studied as the carriers for laccase immobilization: carbon black and nanotubes with various BET specific surface areas. The conditions, which provide the highest surface coverage of carbon material with enzyme in the course of spontaneous adsorptive immobilization and the highest specific characteristics when using a “floating” electrode simulating a gas-diffusion electrode, are determined: 0.2 M phosphate-acetate buffer solution; oxygen atmosphere; the carrier material (nanotubes with a BET surface area of 210 m2/g and a mesopore volume of 3.8 cm3/g); and the composition of active mass on the electrode (50 wt % of carbon material + 50 wt % of hydrophobized carbon black).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarasevich, M.R., Yaropolov, A.I., Bogdanovskaya, V.A., and Varfolomeev, S.D., Electrocatalysis of a cathodic oxygen reduction by laccase, J. Electroanal. Chem., 1979, vol. 104, p. 393.

    Article  Google Scholar 

  2. Tarasevich, M.R., Bogdanovskaya, V.A., Gavrilova, E.F., and Orlov, S.B., Electrocatalysis of cathodic oxygen reduction with biopolymers- enzymes and their models, J. Electroanal. Chem., 1986, vol. 206, p. 217.

    Article  CAS  Google Scholar 

  3. Kuznetsov, A.M., Bogdanovskaya, V.A., Tarasevich, M.R., and Gavrilova, E.F., The mechanism of cathode reduction of oxygen in a carbon carrier-laccase system, FEBS Lett., 1987, vol. 215, no. 2, p. 219.

    Article  CAS  PubMed  Google Scholar 

  4. Bogdanovskaya, V.A., Tarasevich, M.R., Kuznetsova, L.N., Reznik, M.F., and Kasatkin, E.V., Peculiarities of direct bioelectrocatalysis by laccase in aqueous-nonaqueous mixtures, Biosens. Bioelectron., 2002, vol. 17, p. 945.

    Article  CAS  PubMed  Google Scholar 

  5. Tarasevich, M.R., Bogdanovskaya, V.A., and Kapustin, A.V., Nanocomposite material laccase/dispersed carbon carrier for oxygen electrode, Electrochem. Commun., 2003, vol. 5, p. 491.

    Article  CAS  Google Scholar 

  6. Kapustin, A.V., Tarasevich, M.R., Chirkov, Yu.G., and Bogdanovskaya, V.A., Active layer of an oxygen electrode based on nanocomposite disperse carbon carrier + laccase material, Russ. J. Electrochem., 2004, vol. 40, p. 909.

    Article  CAS  Google Scholar 

  7. Tarasevich, M.R., Chirkov, Yu.G., Bogdanovskaya, V.A., and Kapustin, A.V., Fractal and percolation properties of active layer structure at oxygen electrode based on nanocomposite material of dispersed carbon carrier/ laccase, Electrochim. Acta, 2005, vol. 51, p. 418.

    Article  CAS  Google Scholar 

  8. Tarasevich, M.R., Bogdanovskaya, V.A., and Varfolomeev, S.D., Electrocatalysis of a cathodic oxygen reduction by laccase, Bioelectrochem. Bioenerg., 1979, vol. 6, p. 393.

    Article  CAS  Google Scholar 

  9. Patil, B., Kobayashi, Y., Fujikawa, S., Okajima, T., Mao, L., and Ohsaka, T., Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on l-cysteine self-assembled gold electrode, Bioelectrochem., 2014, vol. 95, p. 15.

    Article  CAS  Google Scholar 

  10. Babanova, S., Artyushkova, K., Ulyanova, Y., Singhal, S., and Atanassov, P., Design of experiments and principal component analysis as approaches for enhancing per-formance of gas-diffusional air-breathing bilirubin oxidase cathode, J. Power Sources, 2014, vol. 245, p. 389.

    Article  CAS  Google Scholar 

  11. Haberska, K., Vaz-Dominguez, C., De Lacey, A.L., Dagys, M., Reimann, C.T., and Shleev, S., Direct electron transfer reactions between human ceruloplasmin and electrodes, Bioelectrochem., 2009, vol. 76, p. 34.

    Article  CAS  Google Scholar 

  12. Shoja, Y., Rafati, A.A., and Ghodsi, J., Glassy carbon electrode modified with horse radish peroxidase/ organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa, Mater. Sci. Eng. C, 2016, vol. 58, p. 835.

    Article  CAS  Google Scholar 

  13. Likhtenshtein, G.I., Mnogoyadernye okislitel’no-vosstanovitel’nye metallofermenty (Multinuclear Redox Metal Enzymes), Moscow: Nauka, 1979.

    Google Scholar 

  14. Berezin, I.V., Bogdanovskaya, V.A., Varfolomeev, S.D., Tarasevich, M.R., and Yaropolov, A.I., Equilibrium oxygen potential in the presence of laccase, Dokl. Akad. Nauk SSSR, 1978, vol. 240, p. 615.

    CAS  Google Scholar 

  15. Holzinger, M., Le Goff, A., and Cosnier, S., Carbon nanotube/enzyme biofuel cells, Electrochim. Acta, 2012, vol. 82, p. 179.

    Article  CAS  Google Scholar 

  16. De Poulpiquet, A., Ciaccafava, A., and Lojou, E., New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells, Electrochim. Acta, 2014, vol. 126, p. 104.

    Article  CAS  Google Scholar 

  17. Kim, R.E., Hong, S., Hab, S., and Kim, J., Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells, Enzyme Microb. Technol., 2014, vol. 66, p. 35.

    Article  CAS  PubMed  Google Scholar 

  18. Fenga, P.G., Cardoso, F.P., Aquino, N.S., and Andrade, A.R., Multiwalled carbon nanotubes to improve ethanol/air biofuel cells, Electrochim. Acta, 2013, vol. 106, p. 109.

    Article  CAS  Google Scholar 

  19. Zebda, A., Renaud, L., Cretin, M., Innocent, C., Ferrigno, R., and Tingry, S., Membraneless microchannel glucose biofuel cell with improved electrical performances, Sens. Actuators, B: Chemical, 2010, vol. 149, p. 44.

    Article  CAS  Google Scholar 

  20. Habrioux, A., Merle, G., Servat, K., Kokoh, K.B., Innocent, C., Cretin, M., and Tingry, S., Concentric glucose/O2 biofuel cell, J. Electroanal. Chem., 2008, vol. 622, p. 97.

    Article  CAS  Google Scholar 

  21. Oncescu, V. and Erickson, D., A microfabricated low cost enzyme-free glucose fuel cell for powering lowpower implantable devices, J. Power Sources, 2011, vol. 196, p. 9169.

    Article  CAS  Google Scholar 

  22. Mac, Vittie, K., Conlon, T., and Kat, E., A wireless transmission system powered by an enzyme biofuel cell implanted in an orange, Bioelectrochem., 2015, vol. 106, p. 28.

    Article  CAS  Google Scholar 

  23. Du Toit, H. and Di Lorenzo, M., Continuous power generation from glucose with two different miniature flowthrough enzymatic biofuel cells, Biosens. Bioelectron., 2015, vol. 69, p. 199.

    Article  CAS  PubMed  Google Scholar 

  24. Reid, R.C., Minteer, S.D., and Gale, B.K., Contact lens biofuel cell tested in a synthetic tear solution, Biosens. Bioelectron., 2015, vol. 68, p. 142.

    Article  CAS  PubMed  Google Scholar 

  25. Cosnier, S., Le Goff, A., Holzinger, M., Label-free impedimetric thrombin sensor based on poly (pyrrolenitrilotriacetic acid)-aptamer film, Electrochem. Commun., 2014, vol. 38, p. 19.

    Article  CAS  Google Scholar 

  26. Kizling, M., Draminska, S., Stolarczyk, K., Tammela, P., Wang, Z., Nyholm, L., and Bilewicz, R., Biosupercapacitors for powering oxygen sensing devices, Bioelectrochem., 2015, vol. 106, p. 34.

    Article  CAS  Google Scholar 

  27. Jensen, U.B., Lurcher, S., Vagin, M., Chevallier, J., Shipovskov, S., Koroleva, O., Besenbacher, F., and Ferapontova, E., A 1.76 V hybrid Zn-O2 biofuel cell with a fungal laccase-carbon cloth biocathode, Electrochim. Acta, 2012, vol. 62, p. 218.

    Article  CAS  Google Scholar 

  28. Stolarczyk, K., Kizling, M., Majdecka, D., Zelechowska, K., Biernat, J.F., Rogalski, J., and Bilewicz, R., Cathodic and anodic stripping determination of traces of adenine and adenosine based on accumulation of copper(I) compounds at mercury or amalgam electrodes, J. Power Sources, 2014, vol. 249, p. 263.

    Article  CAS  Google Scholar 

  29. Dagys, M., Lamberg, P., Shleev, S., Niaura, G., Bachmatova, I., Marcinkeviciene, L., Meskys, R., Kulys, J., Arnebrant, T., and Ruzgas, T., Comparison of bioelectrocatalysis at Trichaptum abietinum and Trametes hirsuta laccase modified electrodes, Electrochim. Acta, 2014, vol. 130, p. 141.

    Article  CAS  Google Scholar 

  30. Gupta, G., Lau, C., Branch, B., Rajendran, V., Ivnitski, D., and Atanassov, P., Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes, Electrochim. Acta, 2011, vol. 56, p. 10767.

    Article  CAS  Google Scholar 

  31. Deng, L., Shang, L., Wang, Y., Wang, T., Chen, H., and Dong, S., Multilayer structured carbon nanotubes/ poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell, Electrochem. Commun., 2008, vol. 10, p. 1012.

    Article  CAS  Google Scholar 

  32. Stolarczyk, K., Nazaruk, E., Rogalski, J., and Bilewicz, R., Nanostructured carbon electrodes for laccase-catalyzed oxygen reduction without added mediators, Electrochim. Acta, 2008, vol. 53, p. 3983.

    Article  CAS  Google Scholar 

  33. Karaskiewicz, M., Majdecka, D., Wieckowska, A., Biernat, J.F., Rogalski, J., and Bilewicz, R., Inducedfit binding of laccase to gold and carbon electrodes for the biological fuel cell applications, Electrochim. Acta, 2014, vol. 126, p. 132.

    Article  CAS  Google Scholar 

  34. Poller, S., Beyl, Y., Vivekananthan, J., Guschin, D.A., and Schuhmann, W., A new synthesis route for Oscomplex modified redox polymers for potential biofuel cell applications, Bioelectrochem., 2012, vol. 87, p. 178.

    Article  CAS  Google Scholar 

  35. Karaskiewicz, M., Nazaruk, E., Zelechowska, K., Biernat, J.F., Rogalski, J., and Bilewicz, R., Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube—laccase composite cathodes, Electrochem. Commun., 2012, vol. 20, p. 124.

    Article  CAS  Google Scholar 

  36. Gutiurrez-Sanchez, C., Jia, W., Beyl, Y., Pita, M., Schuhmann, W., De Lacey, A.L., and Stoica, L., Enhanced direct electron transfer between laccase and hierarchical carbon microfibers/carbon nanotubes composite electrodes, Electrochim. Acta, 2012, vol. 82, p. 218.

    Article  CAS  Google Scholar 

  37. Fernandez, M., Sanroman, M.A., and Moldez, D., Recent developments and applications of immobilized laccase, Biotechnol. Adv., 2013, vol. 31, p. 1808.

    Article  CAS  Google Scholar 

  38. Zhutaeva, G.V., Radina, M.V., Kazanskii, L.P., Tarasevich, M.R., Scichko, E.A., and Gavrilova, N.N. Physico-chemical properties of carbon nanotubes as supports for cathode catalysts of fuel cells. Surface structure and corrosion resistance, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, p.45.

    Article  CAS  Google Scholar 

  39. Budevski, E.B., Iliev, I.D., Kaisheva, A.R., Gamburtsev, S.S., and Vakanova, E.B., USSR Inventor’s Certificate no. 500557, 1976.

    Google Scholar 

  40. Shteinberg, G.V., Kukushkina, I.A., Bagotskii, V.S., and Tarasevich, M.R., Study of kinetics of oxygen reduction on dispersed carbon materials, Elektrokhimiya, 1979, vol. 15, p. 527.

    CAS  Google Scholar 

  41. Gorshina, E.S., Rusinova, T.V., Biryukov, V.V., Morozova, O.V., Shleev, S.V., and Yaropolov, A.I., The dynamics of oxidase activity during cultivation of basidiomycetes from the genus Trametes Fr, Appl. Biochem. Microbiol., 2006, vol. 42, p. 558.

    Article  CAS  Google Scholar 

  42. Chakchir, B.A. and Alekseeva, G.M., Fotometricheskie metody analiza: Metodicheskie ukazaniya, (Photometric Methods of Analysis: Procedure Instructions), St. Petersburg: St.-Peterb. Chemical–Pharmaceutical Acad., 2002.

    Google Scholar 

  43. Tarasevich, M.R., Bogdanovskaya, V.A., and Kuznetsova, L.N., Bioelectrocatalytic reduction of oxygen in the presence of laccase adsorbed on carbon electrodes, Russ. J. Electrochem., 2001, vol. 37, p. 833.

    Article  CAS  Google Scholar 

  44. Rubin, V. and Mor, L., Physical modeling of the enzymatic glucose-fueled fuel cells, Adv. Chem. Eng. Sci., 2013, vol. 3, p. 218.

    Article  CAS  Google Scholar 

  45. Klepikov, A.A. and Shamtsyan, M.M., Screening and study of basidiomycetes as producers. Chemistry and Chemical Technology. Organic Synthesis and Biotechnology, Izv. St.-Peterb. State Inst. of Technology (Technical Univ.), 2014, no. 23, p. 39.

    Google Scholar 

  46. Solomon, E.I., Sundaram, U.M., and Machonkin, T.E., Multicopper oxidases and oxygenases, Chem. Rev., 1996, vol. 96, p. 2563.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bogdanovskaya.

Additional information

Original Russian Text © V.A. Bogdanovskaya, I.N. Arkad’eva, M.A. Osina, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 12, pp. 1506–1516.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanovskaya, V.A., Arkad’eva, I.N. & Osina, M.A. Bioelectrocatalytic Oxygen Reduction by Laccase Immobilized on Various Carbon Carriers. Russ J Electrochem 53, 1323–1333 (2017). https://doi.org/10.1134/S1023193517120047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517120047

Keywords

Navigation