Skip to main content
Log in

The Effect of Adsorption of Ions of the Hexacyanoferrate(II)/(III) Redox Pair on Self-Assembly of Octanethiol at Its Adsorption from Aqueous Solutions on Gold Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of components of the redox pair K3[Fe(CN)6]/K4[Fe(CN)6] on the dynamics of formation of octanethiol (OT) monolayers from aqueous thiol-containing solutions of 0.1 М NaClO4 is studied by cyclic voltammetry (CVA). The formation of OT monolayers is shown to depend on the presence of ions of hexacyanoferrate(II)/(III) in solution. Being added to solution, the components of the [Fe(CN)6]3–/4– redox pair sharply increase the time of formation of the insulating monolayer OT films and make them less stable. The destabilizing and inhibiting action of [Fe(CN)6]3–/4– ions becomes stronger as their concentration in solution increases. The adsorption activity of individual components of the redox pair is assessed. The strong and approximately equal adsorption activity of ions [Fe(CN)6]3– and [Fe(CN)6]4– on gold in the presence of octanethiol is observed. At the same time, OT and the hexacyanoferrate(II)/(III) ions can be placed in the following row: OT > [Fe(CN)6]3– ≈ [Fe(CN)6]4–. Recommendations are given on how to eliminate the interfering action of the K3[Fe(CN)6]/K4[Fe(CN)6] redox-pair ions when studying the insulating properties of thiol monolayers on gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaki, N.R. and Vijayamohanan, K., Self-assembled monolayers as a tunable platform for biosensor applications, Biosens. Bioelectron., 2002, vol. 17, p. 1.

    Article  CAS  Google Scholar 

  2. Beulen, M.W.J., Kastenberg, M.I., van Veggel, F., and Reinboudt, D.N., Electrochemical stability of selfassembled monolayers on gold, Langmuir, 1998, vol. 14, p. 7463.

    Article  CAS  Google Scholar 

  3. Johnson, B.N and Mutharasan, R. Regeneration of gold surfaces covered by adsorbed thiols and proteins using liquid-phase hydrogen peroxide-mediated UVphotooxidation, J. Phys. Chem., 2013, vol. 117, p. 1335.

    CAS  Google Scholar 

  4. Carvalhal, R.F., Freire, R.S., and Kubota, L.T., Polycrystalline gold electrode: a comparative study of pretreatment procedures used for cleaning and thiol selfassembly monolayer formation, Electroanalysis, 2005, vol. 17, p. 1251.

    Article  CAS  Google Scholar 

  5. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev., 2005, vol. 105, p. 1103.

    Article  CAS  Google Scholar 

  6. Iost, R.M. and Crespilho, F.N., Layer-by-layer selfassembly and electrochemistry: applications in biosensing and bioelectronics, Biosens. Bioelectron., 2012, vol. 31, p. 1.

    Article  CAS  Google Scholar 

  7. Gooding, J.J. and Ciampi, S., The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies, Chem. Soc. Rev., 2011, vol. 40, p. 2704.

    Article  CAS  Google Scholar 

  8. Mirsky, V.M., New electroanalytical applications of self-assembled monolayers, TrAC, Trends Anal. Chem. 2002, vol. 21, p. 439.

    Article  CAS  Google Scholar 

  9. Byloos, M., Al-Maznai, H., and Morin, M., Formation of a self-assembled monolayer via the electrospreading of physisorbed miselles of thiolates, J. Phys. Chem. B., 1999, vol. 103, p. 6554.

    Article  CAS  Google Scholar 

  10. Yang, D.-F., Wilde, C.P., and Morin, M., Electrochemical desorption and adsorption of nonyl mercaptan at gold single crystal electrode surface, Langmuir, 1996, vol. 12, p. 6570.

    Article  CAS  Google Scholar 

  11. Ovchinnikova, S.N. and Medvedev, A.Zh., Desorption of octanthiol from gold electrode surface during its electrochemical cleaning, Russ. J. Electrochem., 2015, vol. 51, p. 287.]

    Article  CAS  Google Scholar 

  12. Sadler, J.E., Szumski, D.S., Kierzkowska, A., Catarelli, S.R., Stella, K., Nichols, R.J., Fonticelli, M.H., Benitez, G., Blum, B., Salvarezza, R.C., and Schwarzacher, W., Surface functionalization of electro-deposited nickel, Phys. Chem. Chem. Phys., 2011, vol. 13, p. 17987.

    Article  CAS  Google Scholar 

  13. Oymatsu, D., Kuwabata, S., and Yoneyama, H., Underpotential deposition behavior of metals onto gold electrodes coated with self-assembled monolayers of alkanthiols, J. Electroanal. Chem., 1999, vol. 473, p. 59.

    Article  Google Scholar 

  14. Yuan, M., Zhan, S., Zhou, X., Liu, Y., Feng, L., Lin, Y., Zhang, Z., and Hu, J., A method for removing self-assembled monolayers on gold, Langmuir, 2008, vol. 24, p. 8707.

    Article  CAS  Google Scholar 

  15. Porter, M.D., Bright, T.B., Allara, D.L., and Chidseyir, C.E.D., Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, J. Am. Chem. Soc., 1987, vol. 109, p. 3559.

    Article  CAS  Google Scholar 

  16. Kabanova, O.L., The effect of oxygen adsorption on oxidation of ferrocyanide ions on gold electrode, Zh. Anal. Khim., 1961, vol. 16, no. 2, p. 135.

    CAS  Google Scholar 

  17. Loo, B.Y., Lee, Y.G., Liang, E.J., and Kiefer, W., Surface-enhanced Raman scattering from ferrocyanide and ferricyanide ions adsorbed on silver and copper colloids, Chem. Phys. Lett., 1998, vol. 297, p. 83.

    Article  CAS  Google Scholar 

  18. Smalley, J.F., Geng, L., Feldberg, S.W., Rogers, L.C., and Leddy, J., Evidence for adsorption of on gold using the indirect laser-induced temperaturejump method, J. Electroanal. Chem., 1993, vol. 356, p. 181.

    Article  CAS  Google Scholar 

  19. Fleischmann, M., Graves, P.R., and Robinson, J., The Raman spectroscopy of the ferricyanide/ferrocyanide system at gold-palladium hydride and platinum electrodes, J. Electroanal. Chem., 1985, vol. 182, p. 87.

    Article  CAS  Google Scholar 

  20. Lowry, R.B., SERS and Fourier transform SERS studies of the hexacyanoferrate(III)–hexacyanoferrate(II) couple on gold electrode surfaces, J. Raman Spectrosc., 1991, vol. 22, p. 805.

    Article  CAS  Google Scholar 

  21. Lowry, R.B., Fourier transform SERS studies of the chemisorption of ferricyanide on gold electrode surfaces, Spectrochim. Acta, 1993, vol. 49a, p. 831.

    Article  CAS  Google Scholar 

  22. Christensen, P., Hamnett, A., and Trevellick, P., In situ infrared studies in electrochemistry, J. Electroanal. Chem., 1988, vol. 242, p. 23.

    Article  CAS  Google Scholar 

  23. Niwa, K. and Doblhofer, K., IR spectroscopic study of adsorbed species formed on electrodes during the charge transfer reaction, Electrochim. Acta, 1986, vol. 31, p. 439.

    Article  CAS  Google Scholar 

  24. Ovchinnikova, S.N., Comparative electrochemical study of self-assembly of octanthiol from aqueous and aqueous ethanol solutions on a gold electrode, Russ. J. Electrochem., 2016, vol. 52, p. 260.

    Article  CAS  Google Scholar 

  25. Zelinskii, A.G. and Bek, R.Yu., Solid electrode with the surface renewed by cutting, Elektrokhimiya, 1985, vol. 21, p. 66.

    CAS  Google Scholar 

  26. Kletenik, Yu.B. and Aleksandrova, T.P., Submicron regeneration of the working surface of indicator electrodes: regeneration of metal electrodes, J. Anal. Chem., 1997, vol. 52, p. 680.

    CAS  Google Scholar 

  27. Michri, A.A., Pshenichnikov, A.G., and Burshtein, R.Kh., Determination of the true surface of smooth gold electrode, Elektrokhimiya, 1972, vol. 8, p. 364.

    CAS  Google Scholar 

  28. Rogozhnikov, N.A. and Bek, R.Yu., Double-layer capacitance and zero-charge potential of gold electrode in cyanide solutions, Elektrokhimiya, 1987, vol. 23, p. 1440.

    CAS  Google Scholar 

  29. Zhong, C.J. and Porter, M.D., Fine structure in the voltammetric desorption curves of alkanethiolate monolayers chemisorbed at gold, J. Electroanal. Chem., 1997, vol. 425, p. 147.

    Article  CAS  Google Scholar 

  30. Wong, S.S. and Porter, M.D., Origin of the multiple voltammetric desorption waves of long-chain alkanthiolate monolayers chemisorbed on annealed gold electrodes, J. Electroanal. Chem., 2000, vol. 485, p. 135.

    Article  CAS  Google Scholar 

  31. Byloos, M., Al-Maznai, H., and Morin, M., Phase transitions alkanthiol self-assembled monolayers at a electrified gold surface, J. Phys. Chem. B., 2001, vol. 105, p. 5900.

    Article  CAS  Google Scholar 

  32. Walczak, M.M., Aves, C.A., Lamp, B.D., and Porter, M.D., Electrochemical and X-ray photoelectron spectroscopic evidence for difference in the binding sites of alcanthiolate monolayers chemisorbed at gold, J. Electroanal. Chem., 1995, vol. 396, p. 103.

    Article  Google Scholar 

  33. Muglari, M.I., Erbe, A., Chen, Y., Barth, C., Koelsch, P., and Rohwerder, M., Modulation of electrochemical hydrogen evolution rate by araliphatic thiol monolayers on gold, Electrochim. Acta, 2013, vol. 90, p. 17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Ovchinnikova.

Additional information

Original Russian Text © S.N. Ovchinnikova, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikova, S.N. The Effect of Adsorption of Ions of the Hexacyanoferrate(II)/(III) Redox Pair on Self-Assembly of Octanethiol at Its Adsorption from Aqueous Solutions on Gold Electrode. Russ J Electrochem 53, 1246–1253 (2017). https://doi.org/10.1134/S1023193517110106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517110106

Keywords

Navigation