Russian Journal of Electrochemistry

, Volume 54, Issue 2, pp 201–215 | Cite as

A Novel Screen-Printed and Carbon Paste Electrodes for Potentiometric Determination of Uranyl(II) Ion in Spiked Water Samples

  • Tamer Awad Ali
  • Gehad G. Mohamed
  • Refat F. Aglan
  • Mai A. Mourad


Four new ion-selective electrodes (ISEs) based on poly-(1-4)-2-amino-2-deoxy-β-D-glucan (chitosan) ionophore were constructed for determination of uranyl ion (UO2(II)) over wide concentration ranges. The linear concentration range for carbon paste electrodes (CPEs) was 1 × 10–6–1 × 10–2 mol/L with a detection limit of 1 × 10–6 mol/L and that for the screen-printed electrode (SPEs) was 1 × 10–5–1 × 10–1 mol/L with a detection limit of 8 × 10–6 mol/L. The slopes of the calibration graphs were 29.90 ± 0.40 and 29.10 ± 0.60 mV/decade for CPEs with dibutylphthalate (DBP) (electrode I) and o-nitrophenyloctylether (o-NPOE) (electrode II) as plasticizers, respectively. Also, the SPEs showed good potentiometric slopes of 29.70 ± 0.30 and 28.20 ± 1.20 mV/decade with DBP (electrode III) and o-NPOE (electrode IV), respectively. The electrodes showed stable and reproducible potential over a period of 54, 62, 101 and 115 days for electrodes I, II, III, and IV, respectively. The electrodes manifested advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations except Ce(III) ion which interfere seriously. The results obtained compared well with those obtained using atomic absorption spectrometry.


uranyl determination screen-printed electrode carbon paste electrode chitosan 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dawson, J., Smith, V., Clifford, J., and Williams, S.J., Initial studies on the effects of radiation, thermal ageing and aqueous environments on the stability and structure of candidate polymeric encapsulant materials, Mineral. Magazine, 2012, vol. 76, pp. 2985–2994.CrossRefGoogle Scholar
  2. 2.
    Lind, O.C., Stegnar, P., Tolongutov, B., Rosseland, B.O., Strømman, G., Uralbekov, B., et al., Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan, J. Environ. Radioactiv., 2013, vol. 123, pp. 37–49.CrossRefGoogle Scholar
  3. 3.
    Lu, X., Zhou, X.J., and Wang, T.S., Mechanism of uranium( VI) uptake by Saccharomyces cerevisiae under environmentally relevant conditions: Batch, HRTEM, and FTIR studies, J. Hazardous Mater., 2013, vol. 262, pp. 297–303.CrossRefGoogle Scholar
  4. 4.
    Gilman, A.P., Villeuve, D.C., Secours, V.E., Yagminas, A.P., Tracy, B.L., Quinn, J.M., et al., Uranyl nitrate: 28-day and 91-day toxicity studies in the Sprague-Dawley rat, Toxicol. Sci., 1998, vol. 41, pp. 117–128.Google Scholar
  5. 5.
    Murty, B.N., Jagannath, Y.V.S., Yadav, R.B., Ramamurty, C.K., and Syamsundar, S., Spectrophotometric determination of uranium in process streams of a uranium extraction plant, Talanta, 1997, vol. 44, pp. 283–295.CrossRefGoogle Scholar
  6. 6.
    Ioffe, B.L. and Kochurov, B.P., Preliminary results of calculations for heavy-water nuclear-power-plant reactors employing 235U, 233U, and 232Th as a fuel and meeting requirements of a nonproliferation of nuclear weapons, Phys. At. Nucl., 2012, vol. 75, pp. 160–162.CrossRefGoogle Scholar
  7. 7.
    Kusumoputro, B., Sutarya, D., and Na, L., Nuclear Power Plant Fuel’s Quality Classification Using Ensemble Back Propagation Neural Networks, 2013, pp. 367–371.Google Scholar
  8. 8.
    Anirudhan, T.S., Bringle, C.D., and Rijith, S., Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay, J. Environ. Radioactiv., 2010;101:267–276.CrossRefGoogle Scholar
  9. 9.
    Anirudhan, T.S. and Radhakrishnan, P.G., Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater, J. Environ. Radioactiv., 2009, vol. 100, pp. 250–257.CrossRefGoogle Scholar
  10. 10.
    Biradar, P.M., Dhamole, P.B., Nair, R.R., Roy, S.B., Satpati, S.K., D’Souza, S.F., et al., Long-term stability of biological denitrification process for high strength nitrate removal from wastewater of uranium industry, Environ. Progress, 2008, vol. 27, pp. 365–372.CrossRefGoogle Scholar
  11. 11.
    Chernov, A., Uranium Production Plans and Developments in the Nuclear Fuel Industries of Ukraine, The Uranium Institute 23 Annual Symposium, 1998, pp. 329–335.Google Scholar
  12. 12.
    Tan, K., Huang, Y., Wang, W., and Cai, G., Sustainable development of uranium industry from the ideas of ecological security, 2012, pp. 2935–2939.Google Scholar
  13. 13.
    Kramareva, N.V., Stakheev, A.Y., Tkachenko, O.P., Klementiev, K.V., Grünert, W., and Finashina, E.D., Heterogenized palladium chitosan complexes as potential catalysts in oxidation reactions: study of the structure, J. Mol. Catal. A: Chem., 2004, vol. 209, pp. 97–106.CrossRefGoogle Scholar
  14. 14.
    Motawie, A.M., Mahmoud, K.F., El-Sawy, A.A., Kamal, H.M., Hefni, H., and Ibrahiem, H.A., Preparation of chitosan from the shrimp shells and its application for pre-concentration of uranium after crosslinking with epichlorohydrin, Egypt. J. Pet., 2014, vol. 23, pp. 221–228.CrossRefGoogle Scholar
  15. 15.
    Li-xia, W., Zi-wei, W., Guo-song, W., Xiao-dong, L., and Jian-guo, R., Catalytic performance of chitosan- Schiff base supported Pd/Co bimetallic catalyst for acrylamide with phenyl halide, Polym. Adv. Technol., 2010, vol. 21, pp. 244–249.Google Scholar
  16. 16.
    Ji, X., Zhong, Z., Chen, X., Xing, R., Liu, S., and Wang, L., Preparation of 1,3,5-thiadiazine-2-thione derivatives of chitosan and their potential antioxidant activity in vitro, Bioorgan. Med. Chem. Lett., 2007, vol. 17, pp. 4275–4279.CrossRefGoogle Scholar
  17. 17.
    El Badawy, M., Chemical modification of chitosan: Synthesis and biological activity of new heterocyclic chitosan derivatives, Polym. Int., 2008, vol. 57, pp. 254–261.CrossRefGoogle Scholar
  18. 18.
    Liu, H., Zhao, Y., Cheng, S., Huang, N., and Leng, Y., Syntheses of novel chitosan derivative with excellent solubility, anticoagulation, and antibacterial property by chemical modification, J. Appl. Polym. Sci., 2012, vol. 124, pp. 2641–2648.CrossRefGoogle Scholar
  19. 19.
    Lee, Y.M. and Shin, E.M., Pervaporation separation of water-ethanol through modified chitosan membranes, IV: Phosphorylated chitosan membranes, J. Membr. Sci., 1991, vol. 64, pp. 145–152.CrossRefGoogle Scholar
  20. 20.
    Skorik, Y.A., Pestov, A.V., Kodess, M.I., and Yatluk, Y.G., Carboxyalkylation of chitosan in the gel state, Carbohydrate Polym., 2012, vol. 90, pp. 1176–1181.CrossRefGoogle Scholar
  21. 21.
    Atta, A.M., El-Mahdy, G.A., Al-Lohedan, H.A., and Ezzat, A.R.O., Synthesis of nonionic amphiphilic chitosan nanoparticles for active corrosion protection of steel, J. Mol. Liq., 2015, vol. 211, pp. 315–323.CrossRefGoogle Scholar
  22. 22.
    Shamsipur, M., Saeidi, M., Yari, A., Yaganeh-Faal, A., Mashhadizadeh, M.H., Azimi, G., et al., UO ionselective membrane electrode based on a naphtholderivative Schiff’s base 2,2'-[1,2-ethandiyl bis(nitriloethylidene)] bis(1-naphthalene), Bull. Korean Chem. Soc., 2004, vol. 25, pp. 629–33.CrossRefGoogle Scholar
  23. 23.
    Saleh, M.B., Hassan, S.S.M., Abdel Gaber, A.A., and Abdel Kream, N.A., A novel uranyl ion-selective PVC membrane sensor based on 5,6,7,8-tetrahydro-8-thioxopyrido[ 4',3',4,5]thieno[2,3-d]pyrimidine-4(3H)one, Sensor. Actuat. B: Chem., 2003, vol. 94, pp. 140–144.CrossRefGoogle Scholar
  24. 24.
    Arida, H.A.M. and Elsaied, A.M., A Novel bis-(acetylacetone)- p-phenylenediamine–uranyl ion sensing material based coated graphite rod electrode for uranyl ion, Anal. Lett., 2003, vol. 36, pp. 1079–1089.CrossRefGoogle Scholar
  25. 25.
    Jain, A.K., Gupta, V.K., Khurana, U., and Singh, L.P., A new membrane sensor for UOions based on 2-hydroxyacetophenoneoxime-thiourea-trioxane resin, Electroanalysis, 1997, vol. 9, pp. 857–860.CrossRefGoogle Scholar
  26. 26.
    Nassory, N.S., Uranium-sensitive electrodes based on the uranium–di(octylphenyl)phosphate complex as sensor and alkyl phosphate as mediator in a PVC matrix membrane, Talanta, 1989, vol. 36, pp. 672–674.CrossRefGoogle Scholar
  27. 27.
    Shamsipur, M., Soleymanpour, A., Akhond, M., Sharghi, H., and Massah, A.R., Uranyl-selective PVC membrane electrodes based on some recently synthesized benzo-substituted macrocyclic diamides, Talanta, 2002, vol. 58, pp. 237–246.CrossRefGoogle Scholar
  28. 28.
    Johnson, S., Moody, G.J., Thomas, J.D.R., Kohnke, F.H., and Stoddart, J.F., Poly(vinyl chloride) matrix membrane uranyl ion-selective electrodes based on cyclic and acyclic neutral carrier sensors, Analyst, 1989, vol. 114, pp. 1025–1028.CrossRefGoogle Scholar
  29. 29.
    Gupta, V.K., Mangla, R., Khurana, U., and Kumar, P., Determination of uranyl ions using poly(vinyl chloride) based 4-tert-butylcalix[6]arene membrane sensor, Electroanalysis, 1999, vol. 11, pp. 573–576.CrossRefGoogle Scholar
  30. 30.
    Duncan, D.M. and Cockayne, J.S., Application of calixarene ionophores in PVC based ISEs for uranium detection, Sensor. Actuat. B: Chem., 2001, vol. 73, pp. 228–235.CrossRefGoogle Scholar
  31. 31.
    Ramkumar, J. and Maiti, B., Nafion-coated uranyl selective electrode based on calixarene and tri-n-octyl phosphine oxide, Sensor. Actuat. B: Chem., 2003, vol. 96, pp. 527–532.CrossRefGoogle Scholar
  32. 32.
    Hajiaghababaei, L., Sharafi, A., Suzangarzadeh, S., and Faridbod, F., Mercury recognition: A potentiometric membrane sensor based on 4-(benzylidene amino)- 3,4-dihydro-6-methyl-3-thioxo-1,2,4-triazin-5(2H)one, Anal. Bioanal. Electrochem., 2013, vol. 5, pp. 481–493.Google Scholar
  33. 33.
    Ali, T.A., Mohamed, G.G., El-Dessouky, M.M.I., Abou El Ella, S.M., and Mohamed, R.T.F., Modified carbon paste ion selective electrodes for the determination of iron(III) in water, soil and fish tissue samples, Int. J. Electrochem. Sci., 2013, vol. 8, pp. 1469–1486.Google Scholar
  34. 34.
    Ali, T.A., Mohamed, G.G., El-Dessouky, M.M.I., Abou El-Ella, S.M., and Mohamed, R.T.F., Modified screen-printed electrode for potentiometric determination of copper(II) in water samples, J. Solution Chem., 2013, vol. 42, pp. 1336–1354.CrossRefGoogle Scholar
  35. 35.
    Frag, E.Y.Z., Ali, T.A., Mohamed, G.G., and Awad, Y.H.H., Construction of different types of ionselective electrodes. characteristic performances and validation for direct potentiometric determination of orphenadrine citrate, Int. J. Electrochem. Sci., 2012, vol. 7, pp. 4443–4464.Google Scholar
  36. 36.
    Khaled, E., Mohamed, G.G., and Awad, T., Disposal screen-printed carbon paste electrodes for the potentiometric titration of surfactants, Sensor. Actuat., B: Chem., 2008, vol. 135, pp. 74–80.CrossRefGoogle Scholar
  37. 37.
    Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Al-Sabagh, A.M., and Migahed, M.A., New screenprinted ion-selective electrodes for potentiometric titration of cetyltrimethylammonium bromide in different civilic media, Electroanalysis, 2010, vol. 22, pp. 2587–2599.CrossRefGoogle Scholar
  38. 38.
    Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Al-Sabagh, A.M., Migahed, M.A., and Khaled, E., Potentiometric determination of cetylpyridinium chloride using a new type of screen-printed ion selective electrodes, Anal. Chim. Acta, 2010, vol. 673, pp. 79–87.CrossRefGoogle Scholar
  39. 39.
    Mohamed, G.G., Ali, T.A., El-Shahat, M.F., Migahed, M.A., and Al-Sabagh, A.M., Novel screenprinted electrode for the determination of dodecyltrimethylammonium bromide in water samples, Drug Testing Analysis, 2012, vol. 4, pp. 1009–1013.CrossRefGoogle Scholar
  40. 40.
    Mohamed, G.G., El-Shahat, M.F., Al-Sabagh, A.M., Migahed, M.A., and Ali, T.A., Septonex-tetraphenylborate screen-printed ion selective electrode for the potentiometric determination of Septonex in pharmaceutical preparations, Analyst, 2011, vol. 136, pp. 1488–1495.CrossRefGoogle Scholar
  41. 41.
    Ali, T.A., Mohamed, G.G., Azzam, E.M.S., and Abdelaal, A.A., Thiol surfactant assembled on gold nanoparticles ion exchanger for screen-printed electrode fabrication. Potentiometric determination of Ce(III) in environmental polluted samples, Sensor. Actuat. B: Chem., 2014, vol. 191, pp. 192–203.CrossRefGoogle Scholar
  42. 42.
    Betelu, S., Vautrin-Ul, C., Ly, J., and Chaussé, A., Screen-printed electrografted electrode for trace uranium analysis, Talanta, 2009, vol. 80, pp. 372–376.CrossRefGoogle Scholar
  43. 43.
    Wang, J., Baomin, T., and Setiadji, R., Disposable electrodes for field screening of trace uranium, Electroanalysis, 1994, vol. 6, pp. 317–320.CrossRefGoogle Scholar
  44. 44.
    Pérez-Iglesias, J., Seco-Lago, H., Fernández-Solís, J.M., Castro-Romero, J.M., and González-Rodríguez, V., Application of derivative spectrophotometry to simultaneous determination of nickel and mercury with diethylenetriaminepentaacetic acid (DTPA), Anal. Lett., 1997, vol. 30, pp. 317–325.CrossRefGoogle Scholar
  45. 45.
    Sadykov, I.I., Zinov’ev, V.G., and Sadykova, Z.O., Neutron activation analysis of manganese mercury telluride, J. Anal. Chem., 2005, vol. 60, pp. 946–950.CrossRefGoogle Scholar
  46. 46.
    Hirano, S., Kondo, Y., and Nakazawa, Y., Uranylchitosan complexes, Carbohydrate Res., 1982, vol. 100, pp. 431–434.CrossRefGoogle Scholar
  47. 47.
    Bakker, E., Bühlmann, P., and Pretsch, E., Carrierbased ion-selective electrodes and bulk optodes, 1: General characteristics, Chem. Rev., 1997, vol. 97, pp. 3083–3132.CrossRefGoogle Scholar
  48. 48.
    Mikhelson, K. and Peshkova, M., Advances and trends in ionophore-based chemical sensors, Russ. Chem. Rev., 2015, vol. 84, p. 555.CrossRefGoogle Scholar
  49. 49.
    Krayukhina, M.A., Samoilova, N.A., and Yamskov, I.A., Polyelectrolyte complexes of chitosan: formation, properties and applications, Russ. Chem. Rev., 2008, vol. 77, pp. 799–813.CrossRefGoogle Scholar
  50. 50.
    Frag, E.Y., Mohamed, G.G., and El-Sayed, W.G., Potentiometric determination of antihistaminic diphenhydramine hydrochloride in pharmaceutical preparations and biological fluids using screen-printed electrode, Bioelectrochemistry, 2011, vol. 82, pp. 79–86.CrossRefGoogle Scholar
  51. 51.
    Shokrollahi, A., Ghaedi, M., Montazerozohori, M., Khanjari, N., and Najibzadeh, M., Construction of a new uranyl-selective electrode based on a new ionophore: Comparison of the effect additive on electrode responses, J. Chin. Chem. Soc., 2009, vol. 56, pp. 812–821.CrossRefGoogle Scholar
  52. 52.
    Ghaedi, M., Montazerozohori, M., Khodadoust, S., and Behfar, M., Chemically modified multiwalled carbon nanotubes as efficient material for construction of new Al(III) ion selective carbon paste electrode, IEEE Sensors J., 2013, vol. 13, pp. 321–327.CrossRefGoogle Scholar
  53. 53.
    Zidan, W., Badr, I.H., and Akl, Z., Development of potentiometric sensors for the selective determination of U Oions, J. Radioanal. Nucl. Chem., 2015, vol. 303, pp. 469–477.CrossRefGoogle Scholar
  54. 54.
    Serebrennikova, N., Kukushkina, I., and Plotnikova, N., Ion selective membrane uranyl electrode based on mixture of uranyl di-2-ethylhexylphosphate with tributyl phosphate in benzene, J. Anal. Chem., 1982, vol. 37, pp. 645–649.Google Scholar
  55. 55.
    Moody, G., Slater, J.M., and Thomas, J., Poly (vinyl chloride) matrix membrane uranyl ion-selective electrodes based on organophosphorus sensors, Analyst, 1988, vol. 113, pp. 699–703.CrossRefGoogle Scholar
  56. 56.
    Goldberg, I. and Meyerstein, D., Influence of ion exchanger and diluent structure on uranyl ion selective electrode response, J. Anal. Chem., 1980, vol. 52, pp. 2105–2108.CrossRefGoogle Scholar
  57. 57.
    Johnson, S., Moody, G., Thomas, J., Kohnke, F., and Stoddart, J., Poly (vinyl chloride) matrix membrane uranyl ion-selective electrodes based on cyclic and acyclic neutral carrier sensors, Analyst, 1989, vol. 114, pp. 1025–1028.CrossRefGoogle Scholar
  58. 58.
    Florido, A., Casas, I., García-Raurich, J., Arad-Yellin, R., and Warshawsky, A., Uranyl-selective electrode based on a new bifunctional derivative combining the synergistic properties of phosphine oxide and ester of phosphoric acid, J. Anal. Chem., 2000, vol. 72, pp. 1604–1610.CrossRefGoogle Scholar
  59. 59.
    Chen, H., Chen, J., Jin, X., and Wei, D., Determination of trace mercury species by high performance liquid chromatography-inductively coupled plasma mass spectrometry after cloud point extraction, J. Hazardous Mater., 2009, vol. 172, pp. 1282–1287.CrossRefGoogle Scholar
  60. 60.
    Rounaghi, G., Selective uranyl cation detection by polymeric ion selective electrode based on benzo-15- crown-5, Mater. Sci. Eng. C, 2011, vol. 31, pp. 1637–1642.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Tamer Awad Ali
    • 1
  • Gehad G. Mohamed
    • 2
  • Refat F. Aglan
    • 3
  • Mai A. Mourad
    • 2
  1. 1.Egyptian Petroleum Research Institute (EPRI)CairoEgypt
  2. 2.Chemistry DepartmentFaculty of Science, Cairo UniversityGizaEgypt
  3. 3.Hot Laboratory CenterAtomic Energy AuthorityCairoEgypt

Personalised recommendations