Skip to main content
Log in

Application of the dissipation theorem to turbulent flow and mass transfer in a pipe

  • Section 1. Mass and Charge Transfer
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The dissipation theorem is applied to turbulent pipe flow. The eddy-viscosity profiles can be made to agree with some in the literature in the sense that the eddy viscosity starts at zero on the solid pipe wall, rises to a maximum, and declines again toward the center line. A relationship between the volumetric dissipation and the eddy viscosity is derived by means of an energy balance on a core of fluid of radius r. The question of what exponent to use on the radius in another governing equation is clarified, thereby giving better agreement with experimental data than other values tried. Negative values of the eddy viscosity can be obtained in some regions of the flow field, such as near the center line, and it is suggested that these can be eliminated by slight modification of the decay term. Better agreement with the shapes of friction-factor and mass-transfer curves could be achieved by further (empirical) modification of the stress dependence of parameters in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1962.

    Google Scholar 

  2. Fuller, T.F. and Newman, J., Convective diffusion near a consolute point, Int. J. Heat Mass Transfer, 1993, vol. 36, pp. 347–351.

    Article  CAS  Google Scholar 

  3. Newman, J., Retardation of falling drops, Chem. Eng. Sci., 1967, vol. 22, pp. 83–85.

    Article  CAS  Google Scholar 

  4. Albery, W.J. and Bruckenstein, S., Ring-disc electrodes, Part 2: Theoretical and experimental collection efficiencies, Trans. Faraday Soc., 1966. vol. 62, pp. 1920–1931.

    Article  CAS  Google Scholar 

  5. Smyrl, W.H. and Newman, J., Ring-disk and sectioned disk electrodes, J. Electrochem. Soc., 1972, vol. 119, pp. 212–219.

    Article  CAS  Google Scholar 

  6. Newman, J., Schmidt number correction for the rotating disk, J. Phys. Chem., 1966, vol. 70, pp. 1327–1328.

    Article  CAS  Google Scholar 

  7. Newman, J., Effect of ionic migration on limiting currents, Ind. Eng. Chem. Fundamentals, 1966, vol. 5, pp. 525–529.

    Article  CAS  Google Scholar 

  8. Newman, J., The Koutecký correction to the Ilkovic equation, J. Electroanal. Chem., 1967, vol. 15, pp. 309–312.

    Article  CAS  Google Scholar 

  9. Lévêque, M.A., Les Lois de la transmission de Chaleur par convection, Annales des Mines, Memoires, Ser. 12, 1928, vol. 13, pp. 201–299, 305–362, 381–415.

    Google Scholar 

  10. Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cambridge Philosophical Soc., 1856, vol. 9, part II, pp. 8–106.

    Google Scholar 

  11. Whitehead, A.N., On the motion of viscous incompressible fluids, Quarterly J. Pure Appl. Math., 1889, vol. 23, pp. 78–93.

    Google Scholar 

  12. Whitehead, A.N., Second approximations to viscous fluid motion, Quarterly J. Pure Appl. Math., 1889, vol. 23, pp. 143–152.

    Google Scholar 

  13. Oseen, C.W., Über die Stokes’sche Formel und über eine verwandte Aufgabe in der Hydrodynamik, Arkiv för Matematik, Astronomi och Fysik, 1911, vol. 6, no. 29, pp. 1–20.

    Google Scholar 

  14. Oseen, C.W., Über den Gültigkeitsbereich der Stokesschen Widerstandsformel, Arkiv för Matematik, Astronomi och Fysik, 1913, vol. 9, no. 16, pp. 1–15.

    Google Scholar 

  15. Kaplun Saul and Lagerstrom, P.A., Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers, J. Math. Mechan., 1957, vol. 6, pp. 585–593.

    Google Scholar 

  16. Kaplun Saul, Low Reynolds numbr flow past a circular cylinder, J. Math. Mechan., 1957, vol. 6, pp. 595–603.

    Google Scholar 

  17. Proudman, I. and Pearson, J.R.A., Expansions at small Reynolds numbers for flow past a sphere and a circular cylinder, J. Fluid Mechan., 1957, vol. 2, pp. 237–262.

    Article  Google Scholar 

  18. Lighthill, M.J., Contributions to the theory of heat transfer through a laminar boundary layer, Proc. Royal Soc., 1950, vol. A202, pp. 359–377.

    Article  Google Scholar 

  19. Acrivos, A., Solution of the laminar boundary layer energy equation at high Prandtl numbers, Phys. Fluids, 1960, vol. 3, pp. 657–658.

    Article  Google Scholar 

  20. Newman, J., Theoretical analysis of turbulent mass transfer with rotating cylinders, J. Electrochem. Soc., 2016, vol. 163, pp. E191–E198.

    Article  CAS  Google Scholar 

  21. Schlichting, Hermann, Boundary-Layer Theory (translated by J. Kestin), 7th ed., New York: McGraw-Hill Book Company, 1979, a. p. 609.

  22. Batchelor, G., The Theory of Homogeneous Turbulence. Cambridge: Cambridge University Press, 1953.

    Google Scholar 

  23. Newman, J., Chemical Engineering 250 Transport Notes, Berkeley: University of California, 2003.

    Google Scholar 

  24. Newman, J. and Thomas-Alyea, K., Electrochemical Systems, Hoboken, New Jersey: John Wiley and Sons, Inc., 2004, Chapter15.

    Google Scholar 

  25. Sieder, E.N. and Tate, G.E., Heat transfer and pressure drop of liquids in tubes, Ind. Eng. Chem., 1936, vol. 28, pp. 1429–1435.

    Article  CAS  Google Scholar 

  26. Levich, B., The theory of concentration polarization, Acta Physicochimica U.R.S.S., 1942, vol. 17, pp. 257–307.

    CAS  Google Scholar 

  27. Levich, B., The theory of concentration polarization, Acta Physicochimica U.R.S.S., 1944, vol. 19, pp. 117–132.

    CAS  Google Scholar 

  28. Davis Watson Hubbard, Mass Transfer in Turbulent Flow at High Schmidt Numbers, Dissertation, Madison: University of Wisconsin, 1964.

    Google Scholar 

  29. Skurygin, E.F., Vorotyntsev, M.A., and Martem’yanov, S.A., Space-time fluctuations of a passive impurity concentration within the diffusion boundary layer in the turbulent flow of a fluid, J. Electroanal. Chem., 1989, vol. 259, pp. 285–293.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Newman.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 10, pp. 1195–1211.

This paper is the author’s contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Newman, J. Application of the dissipation theorem to turbulent flow and mass transfer in a pipe. Russ J Electrochem 53, 1061–1075 (2017). https://doi.org/10.1134/S1023193517100093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517100093

Keywords

Navigation