Skip to main content
Log in

Statistical theory of turbulent mass transfer in electrochemical systems

  • Section 1. Mass and Charge Transfer
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The paper presents an overview of the statistical theory of turbulent mass transfer in electrochemical systems and some new results which generalize the previously obtained relations for the flows of complex geometry. The developed theory does not use traditional semi-empirical hypotheses and analogies, but directly addresses to the solving of the critical for turbulent transfer the closure problem. The mathematical procedure for solving of the closure problem makes use of new equations for the correlations between concentration and velocity fluctuations in different space points and at different time moments; the dumping of turbulent pulsations in the viscous sublayer allows to neglect high order moments and obtain a closed equation for the turbulent mass flux. In general, the relation between the turbulent mass flux and the mean concentration gradient is non-local. Using available experimental information, the non-local equation for the turbulent mass flux is reduced to the traditional local one and the functional form of the turbulent diffusion coefficient is obtained. It is demonstrated that Reynolds analogy cannot been used for the prediction of the turbulent diffusivity. Applications of the developed theory to chemical engineering and to electrochemical flow diagnostics (prediction of flow characteristics using limiting diffusion current measurements) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G., Physicochemical Hydrodynamics, Prentice-Hall: Englewood Cliffs, NJ, 1962.

    Google Scholar 

  2. Pleskov, Yu.V. and Filinovski, V.Yu., Rotating Disc Electrode, Moscow: Nauka, 1972.

    Google Scholar 

  3. Newman, J.J., Newman, J., and Thomas-Alyea, K.E., Electrochemical Systems, John Wiley & Sons Inc., 2004.

    Google Scholar 

  4. Bockris, J.O.M., Reddy, A.K.N., and Gamboa-Aldeco, M., Modern Electrochemistry, 2nd ed., Vol. 2A: Fundamentals of Electrodics, Kluwer Acad., 2000.

    Google Scholar 

  5. Ngo Boum, G.B., Martemianov, S., and Alemany, A., Computational study of laminar flow and mass transfer around a surface-mounted obstacle, Int. J. Heat Mass Transfer, 1999, vol. 42, pp. 2849–2861.

    Article  Google Scholar 

  6. Martemianov, S. and Okulov, V.L., Mass transfer ambiguities in swirling pipe flows, J. Appl. Electrochem., 2002, vol. 32, no. 1, pp. 25–34.

    Article  CAS  Google Scholar 

  7. Monin, A.C. and Yaglom, A.M., Statistical Hydromechanics. Mechanics of Turbulence, vols. 1, 2, Moscow: Nauka, 1965.

    Google Scholar 

  8. Deissler, R.G., Analysis of multipoint-multitime correlations and diffusion in decaying homogeneous turbulence, Nat. Aeronaut. Space Adm., Tech. Rep. R.-96, 1961.

    Google Scholar 

  9. Kraichnan, R., Lagrangian-history close approximation for turbulence, Phys. Fluids, 1965, vol. 8, p. 575.

    Article  Google Scholar 

  10. Martem’yanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Derivation of the nonlocal transport equation of matter in the turbulent diffusion layer, Sov. Electrochem., 1979, vol. 15, no. 6, pp. 787–790.

    Google Scholar 

  11. Martem’yanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Functional form of the turbulent diffusion coefficient in the layer next to the electrode, Sov. Electrochem., 1979, vol. 15, no. 6, pp. 790–795.

    Google Scholar 

  12. Grafov, B.M., Martemianov, S.A., and Nekrasov, L.N., The Turbulent Diffusion Layer in Electrochemical Systems, Moscow: Nauka, 1990.

    Google Scholar 

  13. Vorotyntsev, M.A., Martem’yanov, S.A., and Grafov, B.M., Closed equation of turbulent heat and mass transfer, J. Exp. Theor. Phys., 1980, vol. 79, no. 5, pp. 1797–1808.

    CAS  Google Scholar 

  14. Martem’yanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Spread of the diffusion boundary layer along the electrode under turbulent flow conditions, Sov. Electrochem., 1980, vol. 16, no. 5, pp. 612–615.

    Google Scholar 

  15. Martem’yanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Turbulent mass and heat transport at the imput region of a flat electrode with large Prandtl-Schmidt numbers, Sov. Electrochem., 1980, vol. 16, no. 6, pp. 731–734.

    Google Scholar 

  16. Martemyanov, S., Legrand, J., and Skurygin, E.F., Turbulent mass transfer in the developing diffusion layer at large Schmidt numbers, Int. J. Heat Mass Transfer, 1999, vol. 42, pp. 2357–2362

    Article  CAS  Google Scholar 

  17. Mitchell, J.E. and Hanratty, T.J., J. Fluid Mech., 1966, vol. 26, pp. 199–211.

    Article  CAS  Google Scholar 

  18. Nakoryakov, V.E., Burdukov, A.P., Kashinsky, O.N., and Geshev, P.I., Electrodiffusion Method of Investigation into the Local the Local Structure of Turbulent Flows, Novosibirsk: Nauka, 1986.

    Google Scholar 

  19. Pokryvailo, N.A., Wein, O., and Kovalevskaia, N.D., Electrodiffusion Diagnostics of Polymer and Suspension Flows, Minsk: Nauka i Tekhnika, 1988.

    Google Scholar 

  20. Alekseenko, S.V., Naroryakov, V.E., and Pokusaev, B.G., Wave Flow of Liquid Films, Novosibirsk: Nauka, 1992.

    Google Scholar 

  21. Chaal, L., Albinet, B., Deslouis, C., Al-Janabi, Y.T., Pailleret, A., Boualem Saidani, and Schmitt, G., Wall shear stress mapping in the rotating cage geometry and evaluation of drag reduction efficiency using an electrochemical method, Corrosion Sci., 2009, vol. 51, no. 8, pp. 1809–1816.

    Article  CAS  Google Scholar 

  22. Dumas, T., Lesage, F., Sobolik, V., and Latifi, M.A., Local flow direction measurements using tri-segmented microelectrode in packed beds, Chem. Eng. Res. Design, 2009, vol. 87, pp. 962–966.

    Article  CAS  Google Scholar 

  23. Sodjavi, K., Montagné, B., Bragança, P., Meslem, A., Byrne, P., Degouet, C., and Sobolik, V., PIV and electrodiffusion diagnostics of flow field, wall shear stress and mass transfer beneath three round submerged impinging jets, Exp. Therm. Fluid Sci., 2016, vol. 70, pp. 417–436.

    Article  Google Scholar 

  24. Kristiawan, M., Sodjavi, K., Montagné, B., Meslem, A., and Sobolik, V., Mass transfer and shear rate on a wall normal to an impinging circular jet, Chem. Eng. Sci., 2015, vol. 132, pp. 32–45.

    Article  CAS  Google Scholar 

  25. Fourrié, G., Keirsbulck, L., and Labraga, L., Wall shear stress characterization of a 3D bluff-body separated flow, J. Fluids Structures, 2013, vol. 42, pp. 55–69.

    Article  Google Scholar 

  26. Barbier, F., Alemany, A., and Martemianov, S., On the influence of a high magnetic field on the corrosion and deposition processes in the liquid Pb-17Li alloy, Fusion Eng. Design, 1998, vol. 43, pp. 199–208.

    Article  CAS  Google Scholar 

  27. Kashinsky, O.N., Lobanov, P.D., Pakhomov, M.A., Randin, V.V., and Terekhov, V.I., Experimental and numerical study of downward bubbly flow in a pipe, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 3717–3727.

    Article  CAS  Google Scholar 

  28. Deissler, R., Nat. Aeronaut. Space Adm., Tech. Rep., 1959, no. 1210.

    Google Scholar 

  29. Hanratty, T.J., Phys. Fluids Suppl., 1967, pp. 126–133.

    Google Scholar 

  30. Deslouis, C., Tribollet, B., and Tihon, J., Near-wall turbulence in drag reducing flows investigated by the photolithography-electrochemical probes, J. Non-Newtonian Fluid Mech., 2004, vol. 123, pp. 141–150.

    Article  CAS  Google Scholar 

  31. Keirsbulck, L., Labraga, L., and Gad-el-Hak, M., Statistical properties of wall shear stress fluctuations in turbulent channel flows, Int. J. Heat Fluid Flow, 2012, vol. 37, pp. 1–8.

    Article  Google Scholar 

  32. Dib, A. and Martemianov, S., On similitude of near wall turbulence in viscous sublayer, Russ. J. Electrochem., 2011, vol. 47, no. 9, pp. 980–987.

    Article  CAS  Google Scholar 

  33. Skurygin, E.F., Martemyanov, S.A., Vorotyntsev, M.A., and Grafov, B.M., Calculations of frequent characteristics of the microelectrode turbulent diffusion layer, Sov. Electrochem., 1989, vol. 25, no. 6, pp. 685–688.

    Google Scholar 

  34. Deslouis, C., Gill, O., and Tribollet, B., Frequency response of electrochemical sensors to hydrodynamic fluctuations, J. Fluid. Mech., 1990, vol. 215, pp. 85–96.

    Article  CAS  Google Scholar 

  35. Dib, A., Martemianov, S., Makhloufi, L., and Saidani, B., Calibration of electrodiffusion probes for turbulent flow measurements, Flow Measurement Instrumentation, 2014, vol. 32, pp. 76–83.

    Article  Google Scholar 

  36. Rehimi, F., Aloui, F., Ben Nasrallah, S., Doubliez, L., and Legrand, J., Inverse method for electrodiffusional diagnostics of flows, Int. J. Heat Mass Transfer, 2006, vol. 49, pp. 1242–1254.

    Article  CAS  Google Scholar 

  37. Berrich, E., Aloui, F., and Legrand, J., Experimental validation and critical analysis of inverse method in mass transfer using electrochemical sensor, Exp. Therm. Fluid Sci., 2013, vol. 44, pp. 253–263.

    Article  CAS  Google Scholar 

  38. Vorotyntsev, M.A., Martemyanov, S.A., and Grafov, B.M., Temporal correlation of current pulsations at one or several electrodes; a technique to study hydrodynamic fluctuation characteristics of a turbulent flow, J. Electroanal. Chem., 1984, vol. 179, pp. 1–23.

    Article  CAS  Google Scholar 

  39. Martemyanov, S.A., Correlation of the current-density fluctuations in a stationary diffusion layer which is homogeneous in the transverse direction but evolves along the flow, Sov. Electrochem., 1985, vol. 21, no. 6, pp. 783–786.

    Google Scholar 

  40. Martemyanov, S.A., Correlation on the current fluctuations during turbulent electrolyte flow past electrodes, Sov. Electrochem., 1985, vol. 21, no. 7, pp. 883–787.

    Google Scholar 

  41. Skurygin, E.F., Martemyanov, S.A., and Vorotyntsev, M.A., Space-time fluctuations of a passive impurity concentration within the diffusion boundary layer in the turbulent fluid flow, J. Electroanal. Chem., 1989, vol. 259, pp. 285–293.

    Article  Google Scholar 

  42. Skurygin, E.F., Vorotyntsev, M.A., and Martemyanov, S.A., Pulsations of passive impurity within diffusion layer under turbulent liquid flow conditions, Sov. Electrochem., 1989, vol. 25, no. 5, pp. 588–592.

    Google Scholar 

  43. Skurygin, E.F., Vorotyntsev, M.A., and Martemyanov, S.A., Current density pulsations within turbulent diffusion layer of constant thickness, Sov. Electrochem., 1989, vol. 25, no. 5, pp. 593–598.

    Google Scholar 

  44. Martemyanov, S.A., Skurygin, E.F., and Grafov, B.M., Mutual spectrum of turbulent noises of long electrodes at constant diffusion layer conditions: The nonlinear effects, Russ. J. Electrochem., 1996, vol. 32, no. 12, pp. 1301–1306.

    CAS  Google Scholar 

  45. Martemyanov, S.A., Applicability of electrodiffusion diagnostics in quantitative verification of the statistical theory of turbulent mass transfer, Sov. Electrochem., 1993, vol. 29, no. 1, pp. 110–112.

    Google Scholar 

  46. Martemianov, S. and Danaila, L., On the study of electrochemical turbulent noise in a stirred vessel, Fluctuations Noise Lett., 2003, vol. 3, no. 4, pp. L463–L471.

    Article  Google Scholar 

  47. Adolphe, X., Danaila, L., and Martemianov, S., On the small-scale statistics of turbulent mixing in electrochemical systems, J. Electroanalyt. Chem., 2007, vol. 600, pp. 119–130.

    Article  CAS  Google Scholar 

  48. Martemianov, S., Pallares, J., and Grau, X.F., Comparative study of turbulent mass transfer in the viscous sublayer using electrochemical method and direct numerical simulations, Russ. J. Electrochem., 2012, vol. 48, no. 8, pp. 810–816.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Martemianov.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 10, pp. 1212–1224.

This paper is the author’s contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martemianov, S.A. Statistical theory of turbulent mass transfer in electrochemical systems. Russ J Electrochem 53, 1076–1086 (2017). https://doi.org/10.1134/S1023193517100081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517100081

Keywords

Navigation