Skip to main content
Log in

Theoretical models of X–H bonds breaking (X = C, O, and H) over metal surfaces: Used for simulation of catalytic methane steam reforming

  • Section 3. Electron Transfer Kinetics and Electrochemical Processes
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A short review of the works where theoretical models for describing kinetics of catalytic X–H bonds breaking reactions (X = C, O, and H) over metal surfaces were developed on the basis of concepts of the Dogonadze–Kuznetsov–Levich quantum mechanical theory of chemical processes. Numerical values of the rate constants of these reactions over (111) surfaces of nickel, platinum and rhodium, which are considered as steps of a complex catalytic process of methane steam reforming (MSR) are calculated and compared with experimental data. These rate constants are used for simulations of microkinetic models of the MSR reactions on the catalysts. Effects of external parameters on the MSR rates and on isotope effects are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G. and Dogonadze, R.R., Theory of nonradiative electronic transitions between Ions in Solution, Dokl. Akad. Nauk SSSR, vol. 124, p. 123.

  2. Levich, V.G. and Dogonadze, R.R., The adiabatic theory of electron processes in solutions, Dokl. Akad. Nauk SSSR, 1960, vol. 133, p. 158.

    Google Scholar 

  3. Levich, V.G. and Dogonadze, R.R., Adiabatic theory of electron transfer processes in solution, Coll. Czech. Chem. Comm., 1961, vol. 26, p. 193.

    Article  CAS  Google Scholar 

  4. Levich, V.G., Present state of the theory of oxidationreduction in solution (bulk and electrode reactions), Adv. Electrochem. Electrochem. Eng., 1966, vol. 4, p. 249.

    CAS  Google Scholar 

  5. Levich, V.G., Dogonadze, R.R., and Kuznetsov, A.M., Theory of hydrogen-ion discharge on metals: Case of high overvoltages, Electrochim. Acta, 1968, vol. 13, p. 1025.

    Article  Google Scholar 

  6. Dogonadze, R.R. and Kuznetsov, A.M., Theory of charge transfer kinetics at solid-polar liquid interfaces, Progr. Surf. Sci., 1975, vol. 6, p. 1.

    Article  CAS  Google Scholar 

  7. Dogonadze, R.R. and Kuznetsov, A.M., Quantum Electrochemical Kinetics: Continuum Theory, Comprehensive Treatise of Electrochemistry, Vol. 7, New York: Plenum Publishing Corp., 1983, p. 40.

    Google Scholar 

  8. Kuznetsov, A.M., Charge Transfer in Physics, Chemistry and Biology, Reading, UK: Gordon & Breach, 1995, p. 622.

    Google Scholar 

  9. Kuznetsov, A.M., Stochastic and Dynamic Views of Chemical Reaction Kinetics in Solutions, Lausanne, Switzerland: Press polytechniques et universitaires romandes, 1999, p. 260.

    Google Scholar 

  10. Kuznetsov, A.M. and Ulstrup, J., Electron Transfer in Chemistry and Biology, New York: John Wiley & Sons, 1999, p. 350.

    Google Scholar 

  11. German, E.D. and Sheintuch, M., Predicting CH4 dissociation kinetics on metals: trends, sticking coefficients, H tunneling and kinetic isotope effect, J. Phys. Chem. C, 2013, vol. 117, p. 22811.

    Article  CAS  Google Scholar 

  12. German, E.D., Nekhamkina, O., Temkin, O.N., and Sheintuch M., H-tunneling effects on sequential dissociation of methane over Ni(111) and the overall rate of methane reforming, J. Phys. Chem. C, 2015, vol. 119, p. 9260.

    Article  CAS  Google Scholar 

  13. German, E.D. and Sheintuch, M., Methane steam reforming rates over Pt, Rh and Ni(111) accounting for H tunneling and for metal lattice vibrations, Surf. Sci., 2016, vol. 656, p. 126.

    Article  Google Scholar 

  14. Lee, M.B., Yang, Q.Y., and Ceyer, S.T., Dynamics of the activated chemisorption of CH4 and implication for the pressure gap in catalysis: A molecular beam-high resolution electron energy loss study, J. Chem. Phys., 1987, vol. 87, p. 2724.

    Article  CAS  Google Scholar 

  15. German, E.D., Kuznetsov, A.M., and Sheintuch, M., Predicting the activation energy of catalytic dissociation of the hetero-atomic AB bond, Chem. Phys., 2006, vol. 324, p. 129.

    Article  CAS  Google Scholar 

  16. Landau, L.D. and Lifshitz, E.M., Quantum Mechanics, N.Y.: Pergamon Press, 1991, p. 677.

    Google Scholar 

  17. Merzbacher, E., Quantum Mechanics, 2nd ed., N.Y.: Wiley, 1970, p. 621.

    Google Scholar 

  18. German, E.D. and Sheintuch, M., Kinetics of catalytic OH dissociation on metal surfaces, J. Phys. Chem. C, vol. 116, p. 5700.

  19. Georgievskii, Y. and Stuchebrukhov, A.A., Concerted electron and proton transfer: Transition from non-adiabatic to adiabatic proton tunneling, J. Chem. Phys., 2000, vol. 113, p. 10438.

    Article  CAS  Google Scholar 

  20. Lee, M.B., Yang, Q.Y., and Ceyer, S.T., Dynamics of the activated chemisorption of CH4 and implication for the pressure gap in catalysis: A molecular beam-high resolution electron energy loss study, J. Chem. Phys., 1987, vol. 87, p. 2724.

    Article  CAS  Google Scholar 

  21. Jachimowski, T.A., Hagedorn, C.J., and Weinberg, W.H., Direct and trapping-mediated dissociative chemisorption of methane on Ir(111), Surf. Sci., 1997, vol. 393, p. 126.

    Article  CAS  Google Scholar 

  22. Mortensen, H., Diekhner, L., Baurichter, A., and Luntz, A.C., J. Chem. Phys., 2002, vol. 116, p. 5781.

    Article  CAS  Google Scholar 

  23. Luntz, A.C. and Bethune, D.S., Activation of methane dissociation on a Pt(111) surface, J. Chem. Phys., 1989, vol. 90, p. 1274.

    Article  CAS  Google Scholar 

  24. Wei, J. and Iglesia, E., Pathways and site requirements for the activation and chemical conversion of methane on Ru-based catalysts, J. Phys. Chem. B, 2004, vol. 108, p. 4094.

    Article  CAS  Google Scholar 

  25. Beebe, T.P., Jr., Goodman, D.W., Kay, B.D., and Yates, J.T., Jr., Kinetics of the activated dissociative adsorption of methane on the low index planes of nickel single crystal surfaces, J. Chem. Phys., 1987, vol. 87, p. 2305.

    Article  CAS  Google Scholar 

  26. Jiang, X. and Goodman, D.W., Dissociative adsorption of alkanes on clean and sulfur-modified nickel surfaces, Appl. Phys. A, 1990, vol. 51, p. 99.

    Article  Google Scholar 

  27. Burghgraef, H., Jansen, A.P.J., and van Santen, R.A., Electronic structure calculations and dynamics of methane activation on nickel and cobalt, J. Chem. Phys., 1994, vol. 101, p. 11012.

    Article  CAS  Google Scholar 

  28. Burghgraef, H., Jansen, A.P.J., and van Santen, R.A., Methane activation and dehydrogenation on nickel and cobalt: a computational study, Surf. Sci., 1995, vol. 324, p. 345.

    Article  CAS  Google Scholar 

  29. Yang, H. and Whitten, J. L., Ab initio chemisorption studies of CH3 on Ni(111), J. Am. Chem. Soc., 1991, vol. 113, p. 6442.

    Article  CAS  Google Scholar 

  30. Abid-Pedersen, F., Lytken, O., Engbaek, J., Nielsen, G., Chorkendorff, I., and Nørskov, J.,K., Methane activation on Ni(111): Effects of poisons and step defects, Surf. Sci., 2005, vol. 590, p. 127.

    Article  Google Scholar 

  31. Bengaard, H.S., Alstrup, I., Chorkendorf, I., Ullmann, S., Rostrup-Nielsen, J.R., and Nørskov, J.K., Chemisorption of methane on Ni(100) and Ni(111) surfaces with preadsorbed potassium, J. Catal., 1999, vol. 187, p. 238.

    Article  CAS  Google Scholar 

  32. Bukoski, A., Abbott, H.L., and Harrison, I., Microcanonical unimolecular rate theory at surfaces, III: Thermal dissociative chemisorption of methane on Pt(111) and detailed balance, J. Chem. Phys., 2005, vol. 123, p. 094707.

    Article  CAS  Google Scholar 

  33. Abbott, H.L. and Harrison, I., Methane dissociative chemisorption on Ru(0001) and comparison to metal nanocatalysts, J. Catal., 2008, vol. 254, p. 27.

    Article  CAS  Google Scholar 

  34. Abbott, H.L. and Harrison, I., Dissociative chemisorption and energy transfer for methane on Ir(111), J. Phys. Chem. B, 2005, vol. 109, p. 10371.

    Article  CAS  Google Scholar 

  35. Marsh, A.L., Becraft, K.A., and Somorjai, G.A., Methane dissociative adsorption on the Pt(111) surface over the 300–500 K temperature and 1–10 Torr pressure ranges, J. Phys. Chem. B, 2005, vol. 109, p. 13619.

    Article  CAS  Google Scholar 

  36. DeWitt, K.M., Valadez, L., Abbott, H.L., Kolasinski, K.W., and Harrison, I.J., Using effusive molecular beams and microcanonical unimolecular rate theory to characterize CH4 dissociation on Pt(111), J. Phys. Chem. B, 2006, vol. 110, p. 6705.

    Article  CAS  Google Scholar 

  37. Higgins, J., Conjusteau, A., Scoles, G., and Bernasek, S.L., State vibrational (2v3) activation of the chemisorption of methane on Pt(111), J. Chem. Phys., 2001, vol. 114, p. 5277.

    Article  CAS  Google Scholar 

  38. Zeigarnik, A.V. and Shustorovich, E., The UBI-QEP method: Mechanistic and kinetic studies of heterogeneous catalytic reactions, Russ. J. Phys. Chem. B, 2007, vol. 1, p. 330.

    Article  Google Scholar 

  39. Larsen, J.H., Holmblad, P.M., and Chorkendorff, I., Dissociative sticking of CH4 on Ru(0001), J. Chem. Phys., 1999, vol. 110, p. 2637.

    Article  CAS  Google Scholar 

  40. Winters, H.F., The kinetic isotope effect in the dissociative chemisorption of methane, J. Chem. Phys., 1976, vol. 64, p. 3495.

    Article  CAS  Google Scholar 

  41. Bell, R.P., The Proton in Chemistry, 2nd ed., London: Chapman and Hall, 1973, p. 310.

    Book  Google Scholar 

  42. Jones, G., Jakobsen, J.G., Shim, S.S., Kleis, J., Andersson, M.P., Rossmeisl, J., Abid-Pedersen, F., Bligaard, T., Helveg, S., Hinneman, B., Rostrup-Nielsen, J.R., Chorkendorff, I., Sehested, J., and Norskov, J.K., First principles calculations and experimental insight into methane steam reforming over transition metal catalysis, J. Catal., 2008, vol. 259, p. 147.

    Article  CAS  Google Scholar 

  43. Sprung, C., Arstad, B., and Olsbye, U., Methane steam reforming over a Ni/NiAl2O4 model catalyst–kinetics, Chem. Cat. Chem., 2014, vol. 6, p. 1969.

    CAS  Google Scholar 

  44. Wei, J. and Iglesia, E., Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts, J. Catal., 2004, vol. 224, p. 370.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. German.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 10, pp. 1379–1389.

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

German, E.D. Theoretical models of X–H bonds breaking (X = C, O, and H) over metal surfaces: Used for simulation of catalytic methane steam reforming. Russ J Electrochem 53, 1222–1231 (2017). https://doi.org/10.1134/S1023193517100044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517100044

Keywords

Navigation