Skip to main content
Log in

Mediator reduction of bromate anion at rotating disk electrode under steady-state conditions for high current densities

  • Section 1. Mass and Charge Transfer
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Theoretical study of the bromate anion reduction under steady-state conditions is performed for rotating disk electrode. Transport of the components in solution is described within the framework of the Nernst stagnant layer model. Numerical calculations carried out recently for the same system confirmed the validity of our previous approximate analytical approaches for the weak current and thin kinetic layer regimes for small and moderate values of the principal parameters of the system: ratio of the diffusion and kinetic layer thicknesses, x dk = z d/z k, for the whole range of possible currents. At the same time, these numerical results showed a pronounced change of the calculated concentration distributions, compared to the predictions of the thin kinetic layer model, for very large values of the x dk parameter. A new theoretical analysis performed in this study provides approximate analytical expressions for the concentration distributions under conditions of very strong current exceeding the bromate diffusion-limited one. These expressions demonstrate that the passing of such currents results in a cardinal change of the kinetic layer structure, compared to that for weaker currents. The comproportionation reaction takes place mainly inside a layer near the electrode surface for moderate current densities while for strong currents a BrO3 -free layer is formed near the surface, so that the reaction is localized within a narrow “reaction zone” displaced from the electrode surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, NY: Prentice-Hall, 1962.

    Google Scholar 

  2. Pleskov, Yu.V. and Filinovsky, V.Yu., Rotating Disk Electrode, New York: Consultants Bureau, 1976.

    Book  Google Scholar 

  3. Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod s kol’tsom (Rotating Ring-Disk Electrode), Moscow: Nauka, 1987.

    Google Scholar 

  4. Frumkin, A.N. and Florianovich, G.M., Electroreduction of anions, Doklady Akad. Nauk SSSR, 1951, vol. 80, p. 90.

    Google Scholar 

  5. Florianovich, G.M. and Frumkin, A.N., On the mechanism of electroreduction of anions on a mercury electrode, Zh. Phys. Chem. A, 1955, vol. 29, p. 1827.

    CAS  Google Scholar 

  6. Frumkin, A.N., Nikolaeva-Fedorovich, N.V., Berezina, N.P., and Keis, H.E. The electroreduction of the S2O82- anion, J. Electroanal. Chem., 1975, vol. 58, p. 189.

    Article  CAS  Google Scholar 

  7. Botukhova, G.N., Borzenko, M.I., and Petrii, O.A., Russ. J. Electrochem., 2004, vol. 40, p. 414.

    Article  CAS  Google Scholar 

  8. Tolmachev, Y.V., Piatkivskyi, A., Ryzhov, V.V., Konev, D.V., and Vorotyntsev, M.A., Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion, J. Solid State Electrochem., 2015, vol. 19, p. 2711.

    Article  CAS  Google Scholar 

  9. Tolmachev, Y.V. and Vorotyntsev, M.A., Fuel cells with chemically regenerative redox cathodes, Russ. J. Electrochem., 2014, vol. 50, p. 403.

    Article  CAS  Google Scholar 

  10. Vorotyntsev, M.A., Konev, D.V., and Tolmachev, Y.V. Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC" mechanism. Theory for stationary 1D regime, Electrochim. Acta., 2015, vol. 173, p. 779.

    Article  CAS  Google Scholar 

  11. Antipov, A.E. and Vorotyntsev, M.A., Bromate anion electroreduction on inactive RDE under steady-state conditions. Numerical study of ion transport processes and comproportionation reaction, Russ. J. Electrochem., 2016, vol. 52, p. 925.

    Article  CAS  Google Scholar 

  12. Vorotyntsev, M.A. and Antipov, A.E., Reduction of bromate anion via autocatalytic redox-mediation by Br2/Br redox couple. theory for stationary 1D regime. effect of different Nernst layer thicknesses for reactants, J. Electroanal. Chem., 2016, vol. 779, p. 146.

    Article  CAS  Google Scholar 

  13. Antipov, A.E. and Vorotyntsev, M.A., Generalized Nernst layer model for convective-diffusional transport. Numerical solution for bromate anion electroreduction on inactive RDE under steady state conditions, Russ. J. Electrochem., 2017, vol. 53. In press.

    Google Scholar 

  14. Antipov, A.E. and Vorotyntsev, M.A., Bromate anion electroreduction on RDE under steady state conditions in excess of protons: numerical solution of the convection- diffusion equations with equal diffusion coefficients of components, Russ. J. Electrochem., 2017, vol. 53. In press.

    Google Scholar 

  15. Antipov, A.E. and Vorotyntsev, M.A., Bromate anion electroreduction on RDE maximal current density: asymptotic behavior for huge thicknesses of diffusion layer, Russ. J. Electrochem., 2017, vol. 53. In press.

    Google Scholar 

  16. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  17. Field, R.J. and Forsterling H.-D. On the Oxybromine Chemistry Rate Constants with Cerium Ions in the Field-Koros-Noyes Mechanism of the Belousov- Zhabotinskii Reaction: The Equilibrium HBrO2 + BrO3 - + H+ = 2BrO2 + H2O, J. Phys. Chem., 1986, vol. 90, p. 5400.

    Article  CAS  Google Scholar 

  18. Kshirsagar, G. and Field, R.J., A Kinetic and Thermodynamic Study of Component Processes in the Equilibrium 5HOBr = 2Br2 + BrO3 - + 2H2O + H+, J. Phys. Chem., 1988, vol. 92, p. 7074.

    Article  CAS  Google Scholar 

  19. Gyorgyi, L., Turanyi, T., and Field, R.J., Mechanistic details of the oscillatory Belousov-Zhabotinskii reaction, J. Phys. Chem., 1990, vol. 94, p. 7162.

    Article  CAS  Google Scholar 

  20. Cortes, C.E.S. and Faria, R.B., Revisiting the kinetics and mechanism of bromate-bromide reaction, J. Brazilian Chem. Soc., 2001, vol. 12, p. 775.

    Article  CAS  Google Scholar 

  21. Cortes, C.E.S. and Faria, R.B., Kinetics and mechanism of bromate-bromide reaction catalyzed by acetate, Inorg. Chem., 2004, vol. 43, p. 1395.

    Article  CAS  Google Scholar 

  22. Schmitz, G., Kinetics of the bromate-bromide reaction at high bromide concentrations, Int. J. Chem. Kinet., 2007, vol. 39, p. 1721.

    Article  Google Scholar 

  23. Pugh, W., The stability of bromic acid and its use for the determination of bromide in bromates and in chlorides, Trans. Roy. Soc. S. Afr., 1932, vol. 20, p. 327.

    Article  CAS  Google Scholar 

  24. Vorotyntsev, M.A. and Antipov, A.E., Bromate electroreduction via autocatalytic redox mediation: EC" mechanism. theory for stationary 1D regime. Current limitation by proton transport, Electrochim. Acta, 2004, vol. 43, p. 1395.

    Google Scholar 

  25. Antipov, A.E., Vorotyntsev, M.A., Tolmachev, Y.V., Antipov, E.M., and Aldoshin, S.M., Electroreduction of bromate anion in acidic solutions at the inactive rotating disc electrode under steady-state conditions: Numerical modeling of the process with bromate anions being in excess compared to, Doklady Phys. Chem., 2004, vol. 43, p. 1395.

    Google Scholar 

  26. Vorotyntsev, M.A. and Antipov, A.E., Generalized Nernst layer model: application to bromate anion electroreduction. Theory for stationary 1D regime for proton transport limitations, ChemElectroChem., 2004, vol. 43, p. 1395.

    Google Scholar 

  27. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Academic, 1954.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Vorotyntsev.

Additional information

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

Original Russian Text © M.A. Vorotyntsev, A.E. Antipov, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 9, pp. 1032–1045.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorotyntsev, M.A., Antipov, A.E. Mediator reduction of bromate anion at rotating disk electrode under steady-state conditions for high current densities. Russ J Electrochem 53, 919–931 (2017). https://doi.org/10.1134/S1023193517090178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517090178

Keywords

Navigation