Russian Journal of Electrochemistry

, Volume 53, Issue 9, pp 1011–1018 | Cite as

Electrochemistry of Gala apples: Memristors in vivo

Section 2. Physicochemical Mechanics
  • 25 Downloads

Abstract

Leon Chua postulated the memristor, a resistor with memory, in 1971 and the first solid-state memristor was built in 2008. Recently, we found memristors in vivo as components of plasma membranes in plants, fruits, roots and seeds. A memristor is a nonlinear element; its current–voltage characteristic is similar to that of a Lissajous pattern. The analysis of presence of memristors in apple fruits is based on cyclic voltammetric characteristics at different frequencies of bipolar voltage waves. The electrostimulation of apple fruits by bipolar periodic triangular or sinusoidal voltage waves induces electrical responses with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of K+ ion channels, transforms memristors to resistors in apple fruits. Memristive properties of apple fruits are linked to the properties of voltage gated K+ ion channels. The shape of cyclic voltammograms depends on frequency bipolar triangular or sinusoidal waves. The analytical model of a memristor with a capacitor connected in parallel exhibits different characteristic behavior at low and high frequency of applied voltage, which is the same as experimental data obtained by cyclic voltammetry in vivo. The discovery of memristors in fruits creates a new direction in the modeling and understanding of electrochemical phenomena in fruit ion channels and structures.

Keywords

memristor cyclic voltammetry electrochemistry apple signal transduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Levich, V.G., Course of Theoretical Physics, vol. 1, Moscow: Nauka, 1969, p. 910.Google Scholar
  2. 2.
    Landau, L.D., Lifshitz, E.M., and Pitaevskii, L.P., Electrodynamics of Continuous Media, 2nd ed., Oxford: Butterworth-Heinemann, 1999, p. 460.Google Scholar
  3. 3.
    Vdovin, Yu.A., Levich, V.G., and Myamlin, V.A., Voltampere characteristics of an electrolyte-electronic semiconductor contact, Dokl. Akad. Nauk SSSR, 1959, vol. 124, p. 350.Google Scholar
  4. 4.
    Levich, V.G. and Grafov, B.M., Alternating current in a binary electrolyte, Dokl. Akad. Nauk SSSR, 1962, vol. 146, p. 398.Google Scholar
  5. 5.
    Chua, L., Memristor–The missing circuit element, IEEE Trans. Circuit Theory, 1971, vol. 18, p. 507.CrossRefGoogle Scholar
  6. 6.
    Chua, L., If it’s pinched, it’s a memristor, Semicond. Sci. Technol., 2014, vol. 29, p. 104001.CrossRefGoogle Scholar
  7. 7.
    Volkov, A.G., Tucket, C., Reedus, J., Volkova, M.I., Markin, V.S., and Chua, L., Memristors in plants, Plant Signal. Behav., 2014, vol. 9, p. e28152-1–8.Google Scholar
  8. 8.
    Jacobsen, T., Zachau-Christiansen, Bay, L., and Jorgensen, M.J., Hysteresis in the solid oxide fuel cell cathode reaction, Electrochim. Acta, 2001, vol. 46, p. 1019.CrossRefGoogle Scholar
  9. 9.
    MacVittie, K. and Katz, E., Electrochemical systems with memimpedance properties, J. Phys. Chem. C, 2013, vol. 117, p. 24943.CrossRefGoogle Scholar
  10. 10.
    Gale, E., Adamatsky, A., and Costello, B.D.L., Are slime moulds living memristors?, arXiv2013.1306.3414v1.Google Scholar
  11. 11.
    Johnsen, G.K., Lutken, C.A., Martinsen, O.G., and Grimnes, S., Memristive model of electro-osmosis in skin, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys., 2011, vol. 83, p. 031916.CrossRefGoogle Scholar
  12. 12.
    Strukov, D.B., Snider, G.S., Stewart, D.R., and Williams, R.S., The missing memristor found, Nature, 2008, vol. 453, p. 80.CrossRefGoogle Scholar
  13. 13.
    Pershin, Y.V., La Fontaine, S., and Ventra, M.Di., Memristive model of amoeba learning, Phys. Rev. E, 2009, vol. 80, p. 021926.0.CrossRefGoogle Scholar
  14. 14.
    MacVittie, K. and Katz, E., Self-powered electrochemical memristor based on a biofuel cell–Towards memristors integrated with biocomputing systems, Chem. Commun., 2014, vol. 50, p. 4816.CrossRefGoogle Scholar
  15. 15.
    Chua, L., Sbitnev, V., and Kim, H., Hodgkin-Huxlew axon is made of memristors, Int. J. Bifurcation Chaos, 2012, vol. 22, p. 1230011-1-48.CrossRefGoogle Scholar
  16. 16.
    Chua, L., Sbitnev, V., and Kim, H., Neurons are poised near the edge of chaos, Int. J. Bifurcation Chaos, 2012, vol. 22, p. 1250098-1-49.CrossRefGoogle Scholar
  17. 17.
    Sah, M., Kim, H., and Chua, L., Brains are made of memristors, IEEE Circuits Systems, 2014, vol. 14, p. 12.Google Scholar
  18. 18.
    Volkov, A.G., Green plants: Electrochemical interfaces, J. Electroanal. Chem., 2000, vol. 483, p. 150.CrossRefGoogle Scholar
  19. 19.
    Volkov, A.G., O’Neal, L., Volkova, M.I., and Markin, V.S., Electrostimulation of Aloe vera L., Mimosa pudica L. and Arabidopsis thaliana: Propagation and collision of electrotonic potentials, J. Electrochem. Soc., 2013, vol. 160, p. G3102.CrossRefGoogle Scholar
  20. 20.
    Volkov, A.G., Forde-Tucket, V., Reedus, J., Mitchell, C.M., Volkova, M.I., Markin, V.S., and Chua, L., Memristors in the Venus flytrap, Plant Signal. Behav., 2014, vol. 9, p. e29204-1-12.Google Scholar
  21. 21.
    Volkov, A.G., Nyasani, E.K., Blackmon, A.L., and Volkova, M.I., Memristors: Memory elements in potato tubers, Plant Signal. Behav., 2015, vol. 10, p. e1071750-1-7.CrossRefGoogle Scholar
  22. 22.
    Volkov, A.G., Reedus, J., Mitchell, C.M., Tuckett, C., Forde-Tuckett, V., Volkova, M.I., Markin, V.S., and Chua, L., Memristor in the electrical network of Aloe vera L., Plant Signal. Behav., 2014, vol. 9, p. e29056-1-7.Google Scholar
  23. 23.
    Markin, V.S., Volkov, A.G., and Chua, L., An analytical model of memristors in plants, Plant Signal. Behav., 2014, vol. 9, p. e972887-1-9.CrossRefGoogle Scholar
  24. 24.
    Volkov, A.G., Reedus, J., Mitchell, C.M., Tuckett, C., Volkova, M.I., Markin, V.S., and Chua, L., Memory elements in the electrical network of Mimosa pudica L., Plant Signal. Behav., 2014, vol. 9, p. e982029-1-9.Google Scholar
  25. 25.
    Volkov, A.G., Nyasani, E.K., Tuckett, C., Blackmon, A.L., Reedus, J., and Volkova, M.I., Cyclic voltammetry of apple fruits: Memristors in vivo, Bioelectrochem., 2016, vol. 112, p. 9.CrossRefGoogle Scholar
  26. 26.
    Zhang, L.Y., Peng, Y.B., Pelleschi-Travier, S., Fan, Y., Lu, Y.F., Lu, Y.M., Gao, X.P., Shen, Y.Y., Delrot, S., and Zhang, D.P., Evidence for apoplasmic phloem unloading in developing apple fruit, Plant Physiol., 2004, vol. 135, p. 574.CrossRefGoogle Scholar
  27. 27.
    Lang, A. and Ryan, K.G., Vascular development and sap flow in apple pedicels, Ann. Bot., 1994, vol. 74, p. 381.CrossRefGoogle Scholar
  28. 28.
    Velasco, R., Zharkikh, A., Affourtit, J., Dhingra, A., Cestaro, A., Kalyanaraman, A., Fontana, P., Bhatnagar, S.K., Troggio, M., and Pruss, D., et al., The genome of the domesticated apple (Malus x domestica Borkh.), Nat. Genetics, 2010, vol. 42, p. 833.CrossRefGoogle Scholar
  29. 29.
    Kurenda, A., Pieczywek, P.M., Adamiak, A., and Zdunek, A., Effect of cytochalasin B, lantrunculin B, colchine, cycloheximid, dimethyl sulfoxide and ion channel inhibitors on biospeckle activity in apple tissue, Food Biophysics, 2013, vol. 8, p. 290.CrossRefGoogle Scholar
  30. 30.
    Levich, V.G., Mazur, N.G., and Markin, V.S., Impulse blocking in an electrochemical model of a nerve, Dokl. Akad. Nauk SSSR, 1971, vol. 198, p. 1214.Google Scholar
  31. 31.
    Sah, M.Pd., Yang, C., and Kim, H., A generic model of memristors with parasitic components, IEEE Trans. Circuit Systems, 2015. doi 10.1109/TCSI.2014.2373674-1-8Google Scholar
  32. 32.
    Hodgkin, A.L. and Rushton, W.A.H., The electrical constants of a crustacean nerve fibre, Proc. Royal Soc. B, 1946, vol. 133, p. 444.CrossRefGoogle Scholar
  33. 33.
    Rall, W., Time constants and electrotonic length of membrane cylinders and neurons, Biophys. J., 1969, vol. 9, p. 1483.CrossRefGoogle Scholar
  34. 34.
    Volkov, A.G. and Shtessel, Yu.B., Propagation of electrotonic potentials in plants: Experimental study and mathematical modeling, AIMS Biophysics, 2016, vol. 3, p. 358.CrossRefGoogle Scholar
  35. 35.
    Spanswick, R.M., Electrical coupling between cells of higher plants: A direct demonstration of intercellular communication, Planta, 1972, vol. 102, p. 215.CrossRefGoogle Scholar
  36. 36.
    Frachisse-Stoilskovic, J.M. and Julien, J.L., The coupling between extra-and intracellular electric potentials in Bidens pilosa L., Plant Cell Environ., 1993, vol. 16, p. 633.CrossRefGoogle Scholar
  37. 37.
    Overall, R.L. and Gunning, B.E.S., Intercellular communication in Azolla roots, II: Electrical coupling, Protoplasma, 1982, vol. 111, p. 151.CrossRefGoogle Scholar
  38. 38.
    Paula, S., Volkov, A.G., Van Hoek, A.N., Haines, T.H., and Deamer, D.W., Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness, Biophys. J., 1996, vol. 70, p. 339.CrossRefGoogle Scholar
  39. 39.
    Adhikaru, A.P., Sah, M.Pd., Kim, H., and Chua, L., The fingerprints of memristor, IEEE Trans. Circuits Systems, 2013. http://dx.doi.org/ doi 10.1109/TCSI.2013.325671. 10.1109/TCSI.2013.325671Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of ChemistryOakwood UniversityHuntsvilleUSA
  2. 2.Department of NeurologyUniversity of Texas, Southwestern Medical CenterDallasUSA

Personalised recommendations