Skip to main content
Log in

On the impedance response of reactions influenced by mass transfer

  • Section 1. Mass and Charge Transfer
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A direct relationship is derived between the charge-transfer resistance and the resistive terms ascribable to diffusion for a faradaic reaction influenced by transport of the reacting species to the electrode. The charge-transfer resistance is shown to approach a finite value for potentials at which the current is limited by mass transfer and, conversely, the diffusion impedance approaches a finite value when the current is controlled by kinetics. Supporting experimental results are presented for both an irreversible (oxygen reduction reaction) and a quasi-reversible (ferrocyanide oxidation) electrochemical systems investigated with a rotating- disk electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orazem, M.E. and Tribollet, B., Electrochemical Impedance Spectroscopy, John Wiley & Sons, Inc., 2008, pp. 1–525.

    Book  Google Scholar 

  2. Lasia, A., in Electrochemical Impedance Spectroscopy and Its Applications, New York, NY: Springer, 2014, pp. 1–367.

    Google Scholar 

  3. Raistrick, I.D., Franceschetti, D.R., and Macdonald, J.R., Theory, Impedance Spectroscopy, John Wiley & Sons, Inc., 2005, pp. 27–128.

    Book  Google Scholar 

  4. Warburg, E., Polarization capacity of platinum, Ann. Phys. Berlin, 1901, vol. 6, no. 9, pp. 125–135.

    Article  CAS  Google Scholar 

  5. Buck, R.P., Diffusion-migration impedances for finite, one-dimensional transport in thin-layer and membrane cells–An analysis of derived electrical quantities and equivalent-circuits. J. Electroanal. Chem., 1986, vol. 210, no. 1, pp. 1–19.

    Article  CAS  Google Scholar 

  6. Buck, R.P., Current time responses and impedances of model thin layer and membrane cells with steady state current, Electrochim. Acta, 1993, vol. 38, no. 14, pp. 1837–1845.

    Article  CAS  Google Scholar 

  7. Jacobsen, T. and West, K., Diffusion impedance in planar, cylindrical and spherical symmetry, Electrochim. Acta, 1995, vol. 40, no. 2, pp. 255–262.

    Article  CAS  Google Scholar 

  8. Diard, J.P., Le Gorrec, B., and Montella, C., Linear diffusion impedance. General expression and applications, J. Electroanal. Chem., 1999, vol. 471, no. 2, pp. 126–131.

    Article  CAS  Google Scholar 

  9. Franceschetti, D.R., Macdonald, J.R., and Buck, R.P., Interpretation of finite-length-warburg-type impedances in supported and unsupported electrochemical cells with kinetically reversible electrodes, J. Electrochem. Soc., 1991, vol. 138, no. 5, pp. 1368–1371.

    Article  CAS  Google Scholar 

  10. Gabrielli, C., Electrochemical impedance spectroscopy: Principles, instrumentation, and applications, in Physical Electrochemistry. Principles, Methods, and Applications, Rubinstein, I., Ed., New York: Marcel Dekker, 1995, pp. 243–292.

    Google Scholar 

  11. Randles, J.E.B., Kinetics of rapid electrode reactions, Disc. Faraday Soc., 1947, vol. 1, pp. 11–19.

    Article  Google Scholar 

  12. Randles, J.E.B. and Somerton, K.W., Kinetics of rapid electrode reactions, 3: Electron exchange reactions, Trans. Faraday Soc., 1952, vol. 48, no. 10, pp. 937–950.

    Article  CAS  Google Scholar 

  13. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley-VCH, 2001.

    Google Scholar 

  14. Katsounaros, I., Cherevko, S., Zeradjanin, A.R., and Mayrhofer, K.J., Oxygen electrochemistry as a cornerstone for sustainable energy conversion, Angewandte Chemie, 2014, vol. 53, no. 1, pp. 102–121.

    Article  CAS  Google Scholar 

  15. Jiao, Y., Zheng, Y., Jaroniec, M., and Qiao, S.Z., Design of electrocatalysts for oxygen- and hydrogeninvolving energy conversion reactions, Chem. Soc. Rev., 2015, vol. 44, no. 8, pp. 2060–2086.

    Article  CAS  Google Scholar 

  16. Štrbac, S. and Adžić, R.R., The influence of pH on reaction pathways for O2 reduction on the Au(100) face, Electrochim. Acta, 1996, vol. 41, no. 18, pp. 2903–2908.

    Article  Google Scholar 

  17. Blizanac, B.B., Lucas, C.A., Gallagher, M.E., Arenz, M., Ross, P.N., and Marković, N.M., Anion Adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) Surface: The pH effect, J. Phys. Chem. B, 2004, vol. 108, no. 2, pp. 625–634.

    Article  CAS  Google Scholar 

  18. Gotti, G., Evrard, D., Fajerwerg, K., and Gros, P., Oxygen reduction reaction features in neutral media on glassy carbon electrode functionalized by chemically prepared gold nanoparticles, J. Solid State Electrochem., 2016, vol. 20, no. 6, pp. 1539–1550.

    Article  CAS  Google Scholar 

  19. Štrbac, S., The effect of pH on oxygen and hydrogen peroxide reduction on polycrystalline Pt electrode, Electrochim. Acta, 2011, vol. 56, no. 3, pp. 1597–1604.

    Article  Google Scholar 

  20. Shinagawa, T. and Takanabe, K., Impact of solute concentration on the electrocatalytic conversion of dissolved gases in buffered solutions, J. Power Sources, 2015, vol. 287, pp. 465–471.

    Article  CAS  Google Scholar 

  21. Diard, J.P. and Hecker, C., Experimental and theoretical-study of impedance diagram of a redox system near to the diffusion plateau, J. Electroanal. Chem., 1981, vol. 121 (APR), pp. 125–131.

    Google Scholar 

  22. Huang, V.M.-W., Vivier, V., Orazem, M.E., Pebere, N., and Tribollet, B., The apparent constant-phase-element behavior of a disk electrode with Faradaic reactions. A global and local impedance analysis, J. Electrochem. Soc., 2007, vol. 154, no. 2, pp. C99–C107.

    Article  CAS  Google Scholar 

  23. Huang, V.M.-W., Vivier, V., Frateur, I., Orazem, M.E., and Tribollet, B., The global and local impedance response of a blocking disk electrode with local constant- phase-element behavior, J. Electrochem. Soc., 2007, vol. 154, no. 2, pp. C89–C98.

    Article  CAS  Google Scholar 

  24. Huang, V.M.-W., Vivier, V., Orazem, M.E., Pebere, N., and Tribollet, B., The apparent constant-phase-element behavior of an ideally polarized blocking electrode a global and local impedance analysis, J. Electrochem. Soc., 2007, vol. 154, no. 2, pp. C81–C88.

    Article  CAS  Google Scholar 

  25. Brug, G.J., van den Eeden, A.L.G., Sluyters-Rehbach, M., and Sluyters, J.H., The analysis of electrode impedances complicated by the presence of a constant phase element, J. Electroanal. Chem., 1984, vol. 176, nos. 1–2, pp. 275–295.

    Article  CAS  Google Scholar 

  26. Deslouis, C., Gabrielli, C., and Tribollet, B., An analytical solution of the nonsteady convective diffusion equation for rotating electrodes, J. Electrochem. Soc., 1983, vol. 130, no. 10, pp. 2044–2046.

    Article  CAS  Google Scholar 

  27. Tribollet, B. and Newman, J., Analytic-expression of the warburg impedance for a rotating-disk electrode, J. Electrochem. Soc., 1983, vol. 130, no. 4, pp. 822–824.

    Article  CAS  Google Scholar 

  28. Tribollet, B. and Newman, J., The modulated flow at a rotating-disk electrode, J. Electrochem. Soc., 1983, vol. 130, no. 10, pp. 2016–2026.

    Article  CAS  Google Scholar 

  29. Diard, J.P. and Montella, C., Re-examination of the diffusion–convection impedance for a uniformly accessible rotating disk. Computation and accuracy, J. Electroanal. Chem., 2015, vol. 742, pp. 37–46.

    Article  CAS  Google Scholar 

  30. Genshaw, M.A., Damjanovic, A., and Bockris, J.O.M., Hydrogen peroxide formation in oxygen reduction at gold electrodes, I: Acid solution, J. Electroanal. Chem., 1967, vol. 15, pp. 163–172.

    Article  CAS  Google Scholar 

  31. Damjanovic, A., Genshaw, M.A., and Bockris, J.O.M., Hydrogen peroxide formation in oxygen reduction at gold electrodes, II: Alkaline solution, J. Electroanal. Chem., 1967, vol. 15, pp. 173–180.

    Article  CAS  Google Scholar 

  32. Robertson, B., Tribollet, B., and Deslouis, C., Measurement of diffusion coefficients by DC and EHD electrochemical methods, J. Electrochem. Soc., 1988, vol. 135, no. 9, pp. 2279–2284.

    Article  CAS  Google Scholar 

  33. Gabrielli, C., Keddam, M., Portail, N., Rousseau, P., Takenouti, H., and Vivier, V., Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: Experimental and theoretical studies, J. Phys. Chem. B, 2006, vol. 110, no. 41, pp. 20478–20485.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Orazem.

Additional information

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 9, pp. 1046–1055.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, M.T.T., Tribollet, B., Vivier, V. et al. On the impedance response of reactions influenced by mass transfer. Russ J Electrochem 53, 932–940 (2017). https://doi.org/10.1134/S1023193517090142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517090142

Keywords

Navigation