Skip to main content
Log in

Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6M x Ti2O7–δ (M = In, Li)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium-containing bismuth titanates with the pyrochlore-type structure Bi1.6LixTi2O7–δ were obtained for the first time. The formation of the pyrochlore phase was confirmed by X-ray diffraction analysis, scanning electron microscopy and local microanalysis. In Bi1.6MxTi2O7–δ, the lithium and indium are occupied the bismuth sites, primarily. The electrophysical properties of doped bismuth titanates were studied by impedance spectroscopy in the frequency range 1–106 Hz. In the low-temperature range (of up to ~400°C), electron conductivity predominates; above 400°C, the oxygen-ion type of conductivity is revealed. In the range p(O2) = 0.21–1 atm, the average value of the sum of ion transport numbers is 0.5 at 500–550°C. The relaxation process was found from the frequency dependences of the dielectric parameters (ε', tan δ, M''), which was of the same type for systems with different dopants (In, Li) probably due to the hopping mechanism of oxygen conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Esquivel-Elizondo, J.R., Hinojosa, B.B., and Nino, J.C., Chem. Mater., 2011, vol. 23, p. 4965.

    Article  CAS  Google Scholar 

  2. Kunej, S. and Suvorov, D., J. Am. Ceram. Soc., 2009, vol. 92, p. 959.

    Article  CAS  Google Scholar 

  3. Kunej, S., Scapin, S.D., and Suvorov, D., J. Am. Ceram. Soc., 2012.

    Google Scholar 

  4. Yang, X.N., Wang, H.B., Huang, B.B., and Shang, S.X., Mater. Res. Bull., 2005, vol. 40, p. 724.

    Article  CAS  Google Scholar 

  5. Jing, X., Huang, B., Yang, H., and Wei, J., Appl. Surf. Sci., 2008, vol. 255, p. 2651.

    Article  CAS  Google Scholar 

  6. Sui, H.T., Yang, D.M., Jiang, H., Ding, Y.L., and Yang, C.H., Ceram. Int., 2013, vol. 39, p. 1125.

    Article  CAS  Google Scholar 

  7. Allureda, B., De la Cruz, S., Darlinga, T., Hudac, M.N., and Subramanianb, V., Appl. Catal., B, 2014, vol. 144, p. 261.

    Article  Google Scholar 

  8. Gupta, S. and Leon, L., Phys. Chem. Chem. Phys., 2014, vol. 16, no. 25, p. 12719.

    Article  CAS  Google Scholar 

  9. Merka, O., Bahnemann, D., and Wark, M., Catal. Today, 2014, vol. 225, p. 102.

    Article  CAS  Google Scholar 

  10. Besikiotis, V., Ricote, S., Jensen, M.H., Norby, T., and Haugsrud, R., Solid State Ionics, 2012, vol. 229, p. 26.

    Article  CAS  Google Scholar 

  11. Piir, I.V., Koroleva, M.S., Ryabkov, Y.I., Korolev, D.A., Chezhina, N.V., Semenov, V.G., and Panchuk, V.V., J. Solid State Chem., 2013, vol. 204, p. 245.

    Article  CAS  Google Scholar 

  12. Piir, I.V., Koroleva, M.S., Sekushin, N.A., Grass, V.E., and Ryabkov, Yu.I., Russ. J. Electrochem., 2009, vol. 45, p. 817.

    Google Scholar 

  13. Piir, I.V., Koroleva, M.S., Ryabkov, Y.I., Pikalova, E.Yu., Nekipelov, S.V., Sivkov, V.N., and Vyalikh, D.V., Solid State Ionics, 2014, vol. 262, p. 630.

    Article  CAS  Google Scholar 

  14. Krasnov, A.G., Piskaikina, M.M., and Piir, I.V., Khim. Interesakh Ustoich. Razvit., 2016, vol. 24, p. 687.

    CAS  Google Scholar 

  15. Rodriguez-Carvajal, J., Physica B, 1993, vol. 192, p. 55.

    Article  CAS  Google Scholar 

  16. GOST 2409-2014 Ogneupory. Metod opredeleniya kazhushcheisya plotnosti, otkrytoi i obshchei poristosti, vodopogloshcheniya. Vved. 1.09.2015 (State Standard GOST 2409-2014. Refractory Materials. Method for Determining the Apparent Density, Open and Total Porosity, and Water Absorption. Introduction), Moscow: Standartinform, 2014.

  17. Hector, A.L. and Wiggin, S.B., J. Solid State Chem., 2004, vol. 177, p. 139.

    Article  CAS  Google Scholar 

  18. Hinojosa, B.B., Nino, J.C., and Asthagiri, A., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol.77.

  19. Tan, K.B., Khaw, C.C., Lee, C.K., Zainal, Z., Tan, Y.P., and Shaari, H., Mater. Sci.-Pol., 2009, vol. 27, p. 825.

    CAS  Google Scholar 

  20. Kamba, S., Porokhonskyy, V., Pashkin, A., Bovtun, V., Petzelt, J., Nino, J.C., Trolier-McKinstry, S., Lanagan, M.T., and Randall, C.A., Phys. Rev. B, 2002, vol. 66, p. 054106.

    Article  Google Scholar 

  21. Yaroshenko, F.A. and Burmistrov, V.A., Russ. J. Electrochem., 2015, vol. 51, p. 391.

    Article  CAS  Google Scholar 

  22. Turner, C.G., Esquivel-Elizondo, J.R., and Nino, J.C., J. Am. Ceram. Soc., 2014, p. 971763.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Krasnov.

Additional information

Published on the basis of a report delivered at the 13th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, 2016.

Original Russian Text © A.G. Krasnov, I.V. Piir, N.A. Sekushin, Ya.V. Baklanova, T.A. Denisova, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 8, pp. 972–979.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, A.G., Piir, I.V., Sekushin, N.A. et al. Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6M x Ti2O7–δ (M = In, Li). Russ J Electrochem 53, 866–872 (2017). https://doi.org/10.1134/S1023193517080122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517080122

Keywords

Navigation