Nanoparticles of complex oxides Li1 + x (Ni y Mn z Co1 – yz )1 – x O2 – δ (0 ≤ x ≤ 0.2, 0.2 ≤ y ≤ 0.6, 0.2 ≤ z ≤ 0.4) obtained by thermal destruction of metal-containing compounds in oil

Abstract

Cathode materials in the form of Li1 + x (Ni y Mn z Co1 – yz )1 – x O2 – δ (0 ≤ x ≤ 0.2, 0.2 ≤ y ≤ 0.6, 0.2 ≤ z ≤ 0.4) core–shell nanoparticles coated with a thin carbon shell were synthesized by thermal destruction of metal-containing compounds in oil and studied. The results of element analysis, X-ray diffraction analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical tests of cathodes based on the obtained complex oxides in model cells were presented. The complex oxide Li1.2Ni0.2Mn0.4Co0.2O1.9 was the most promising composition because the loss of capacity after 50 cycles was 4% at a current density C/2 and an operating potential of 3.0–4.4 V relative to E (Li/Li+). When the current density in discharge increased sixfold (3 C), the loss of capacity was 14% relative to the value obtained at a discharge current C/2 at voltages 3.0 to 4.4 V.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Idemoto, Y. and Matsui, T., Solid State Ionics, 2008, vol. 179, p. 625.

    CAS  Article  Google Scholar 

  2. 2.

    Yang, S.Y., Wang, X.Y., and Yang, X.K., J. Solid State Electrochem., 2012, vol. 16, p. 1229.

    CAS  Article  Google Scholar 

  3. 3.

    Park, S.-H., Kang, S.-H., and Belharouak, I., J. Power Sources, 2008, vol. 177, p. 177.

    CAS  Article  Google Scholar 

  4. 4.

    Whittingham, M.S., Chem. Rev., 2004, vol. 104, p. 4271.

    CAS  Article  Google Scholar 

  5. 5.

    Armand, M. and Tarascon, J.M., Nature, 2008, vol. 451, p. 652.

    CAS  Article  Google Scholar 

  6. 6.

    Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Chem. Mater., 2008, vol. 20, p. 6072.

    Article  Google Scholar 

  7. 7.

    Yoshio, M. and Noguchi, H., J. Power Sources, 2000, vol. 90, p. 176.

    CAS  Article  Google Scholar 

  8. 8.

    Xue, L., Li, X., Liao, Y., Xing, L., Xu, M., and Li, W., J. Solid State Electrochem., 2015, vol. 19, p. 569.

    CAS  Article  Google Scholar 

  9. 9.

    Matsuda, K. and Taniguchi, I., J. Power Sources, 2004, vol. 132, p. 156.

    CAS  Article  Google Scholar 

  10. 10.

    Lee, D.K. and Park, S.H., J. Power Sources, 2006, vol. 162, p. 1346.

    CAS  Article  Google Scholar 

  11. 11.

    Lengyel, M. and Atlas, G., J. Power Sources, 2014, vol. 262, p. 286.

    CAS  Article  Google Scholar 

  12. 12.

    Wang, Zh., Dong, H., and Chen, L., J. Solid State Ionics, 2004, vol. 175, p. 239.

    CAS  Article  Google Scholar 

  13. 13.

    Gubin, S.P., Yurkov, G.Yu., and Kosobudsky, I.D., Int. J. Mater. Prod. Technol., 2005, vol. 23, p. 2.

    CAS  Article  Google Scholar 

  14. 14.

    Gubin, S.P. and Yurkov, G.Yu., Russ. J. Inorg. Chem., 2002, vol. 47, suppl. 1, p. 32.

    Google Scholar 

  15. 15.

    Cheglakov, A.V., Kornilov, D.Yu., Voronov, V.A., Gubin, S.P., and Geller, M.M., RF Patent 2536649, 2013.

  16. 16.

    Voronov, V.A. and Gubin, S.P., Inorg. Mater., 2015, vol. 51, no. 11, p. 1151.

    CAS  Article  Google Scholar 

  17. 17.

    Voronov, V.A. and Gubin, S.P., Inorg. Mater., 2014, vol. 50, no. 4, p. 409.

    CAS  Article  Google Scholar 

  18. 18.

    Ohzuku, T. and Makimura, Y., Chem. Lett., 2001, vol. 30, no. 7, p. 642.

    Article  Google Scholar 

  19. 19.

    Johnson, C.S., Kim, J-S., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Electrochem. Commun., 2004, p. 1085.

    Google Scholar 

  20. 20.

    Thackeray, M.M., Kang, S.-H., and Johnson, C.S., J. Mater. Chem., 2007, vol. 17, p. 3112.

    CAS  Article  Google Scholar 

  21. 21.

    Sun, Y. and Ouyang, C., J. Electrochem. Soc., 2004, vol. 151, p. 504.

    Article  Google Scholar 

  22. 22.

    He, Y.S., Ma, Z.F., and Jiang, Y., J. Power Sources, 2007, vol. 163, p.1053.

  23. 23.

    Ju, J.H. and Ryu, K.S., J. Alloys Compd., 2011, vol. 509, p. 7985.

    CAS  Article  Google Scholar 

  24. 24.

    Sun, Y., Ouyang, C., Wang, Z., and Huang, L., J. Electrochem. Soc., 2004, vol. 151, p. 504.

    Article  Google Scholar 

  25. 25.

    Voronov, V.A., Shvetsov, A.O., Gubin, S.P., Cheglakov, A.V., Kornilov, D.Yu., Karaseva, A.S., Krasnova, E.S., and Tkachev, S.V., Zh. Perspekt. Mater., 2016, no. 8, p. 5.

    Google Scholar 

  26. 26.

    Koyama, Y., Yabuuchi, N., and Tanaka, I., J. Electrochem. Soc., 2004, vol. 151, p. 1545.

    Article  Google Scholar 

  27. 27.

    Noh, H.J., J. Power Sources, 2013, vol. 233, p. 121.

    CAS  Article  Google Scholar 

  28. 28.

    Cao, H., Zhang, Y., and Zhang, J., Solid State Ionics, 2005, vol. 176, p. 1207.

    CAS  Article  Google Scholar 

  29. 29.

    McIntyre, N.S. and Cook, M.G., Anal. Chem., 1975, vol. 47, p. 2208.

    CAS  Article  Google Scholar 

  30. 30.

    Li, C.P., Proctor, A., and Hercules, D.M., Appl. Spectrosc., 1984, vol. 38, p. 880.

    CAS  Article  Google Scholar 

  31. 31.

    Tran, N., Croguennec, L., and Jordy, C., Solid State Ionics, 2005, vol. 176, p. 1539.

    CAS  Article  Google Scholar 

  32. 32.

    Kosova, N.V., Devyatkina, E.T., and Kaichev, V.V., J. Power Sources, 2007, 174, p. 965.

    Google Scholar 

  33. 33.

    Voronov, V.A., Shvetsov, A.O., Gubin, S.P., Cheglakov, A.V., Kornilov, D.Yu., Karaseva, A.S., Krasnova, E.S., Tkachev, S.V., Russ. J. Inorg. Chem., 2016, vol. 51, p. 1153.

    Article  Google Scholar 

  34. 34.

    Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Chem. Mater., 2008, vol. 20, p. 6095.

    CAS  Article  Google Scholar 

  35. 35.

    Yabuuchi, N. and Ohzuku, T., J. Power Sources, 2003, vols. 119–121, p.171.

    Google Scholar 

  36. 36.

    Liao, P.Y., Duh, J.G., and Sheen, S.R., J. Electrochem. Soc., 2005, vol. 152A, p. 1695.

    Article  Google Scholar 

  37. 37.

    Cao, H., Zhang, Y., Zhang, J., and Xia, B., Solid State Ionics, 2005, vol. 176, p. 1207.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. A. Voronov.

Additional information

Original Russian Text © V.A. Voronov, S.P. Gubin, A.V. Cheglakov, D.Yu. Kornilov, A.S. Karaseva, E.S. Krasnova, S.V. Tkachev, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 7, pp. 864–872.

Published on the basis of a report delivered at the 13th International Meeting “Fundamental Problems of Solid State Ionics,” Chernogolovka, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voronov, V.A., Gubin, S.P., Cheglakov, A.V. et al. Nanoparticles of complex oxides Li1 + x (Ni y Mn z Co1 – yz )1 – x O2 – δ (0 ≤ x ≤ 0.2, 0.2 ≤ y ≤ 0.6, 0.2 ≤ z ≤ 0.4) obtained by thermal destruction of metal-containing compounds in oil. Russ J Electrochem 53, 769–776 (2017). https://doi.org/10.1134/S1023193517070163

Download citation

Keywords

  • cathode materials
  • complex oxides
  • core–shell nanoparticles
  • thermal destruction of metal-containing compounds in oil
  • nanoreactor
  • lithium-ion battery