Advertisement

Russian Journal of Electrochemistry

, Volume 53, Issue 7, pp 769–776 | Cite as

Nanoparticles of complex oxides Li1 + x (Ni y Mn z Co1 – yz )1 – x O2 – δ (0 ≤ x ≤ 0.2, 0.2 ≤ y ≤ 0.6, 0.2 ≤ z ≤ 0.4) obtained by thermal destruction of metal-containing compounds in oil

  • V. A. VoronovEmail author
  • S. P. Gubin
  • A. V. Cheglakov
  • D. Yu. Kornilov
  • A. S. Karaseva
  • E. S. Krasnova
  • S. V. Tkachev
Article
  • 36 Downloads

Abstract

Cathode materials in the form of Li1 + x (Ni y Mn z Co1 – yz )1 – x O2 – δ (0 ≤ x ≤ 0.2, 0.2 ≤ y ≤ 0.6, 0.2 ≤ z ≤ 0.4) core–shell nanoparticles coated with a thin carbon shell were synthesized by thermal destruction of metal-containing compounds in oil and studied. The results of element analysis, X-ray diffraction analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, and electrochemical tests of cathodes based on the obtained complex oxides in model cells were presented. The complex oxide Li1.2Ni0.2Mn0.4Co0.2O1.9 was the most promising composition because the loss of capacity after 50 cycles was 4% at a current density C/2 and an operating potential of 3.0–4.4 V relative to E (Li/Li+). When the current density in discharge increased sixfold (3 C), the loss of capacity was 14% relative to the value obtained at a discharge current C/2 at voltages 3.0 to 4.4 V.

Keywords

cathode materials complex oxides core–shell nanoparticles thermal destruction of metal-containing compounds in oil nanoreactor lithium-ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Idemoto, Y. and Matsui, T., Solid State Ionics, 2008, vol. 179, p. 625.CrossRefGoogle Scholar
  2. 2.
    Yang, S.Y., Wang, X.Y., and Yang, X.K., J. Solid State Electrochem., 2012, vol. 16, p. 1229.CrossRefGoogle Scholar
  3. 3.
    Park, S.-H., Kang, S.-H., and Belharouak, I., J. Power Sources, 2008, vol. 177, p. 177.CrossRefGoogle Scholar
  4. 4.
    Whittingham, M.S., Chem. Rev., 2004, vol. 104, p. 4271.CrossRefGoogle Scholar
  5. 5.
    Armand, M. and Tarascon, J.M., Nature, 2008, vol. 451, p. 652.CrossRefGoogle Scholar
  6. 6.
    Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Chem. Mater., 2008, vol. 20, p. 6072.CrossRefGoogle Scholar
  7. 7.
    Yoshio, M. and Noguchi, H., J. Power Sources, 2000, vol. 90, p. 176.CrossRefGoogle Scholar
  8. 8.
    Xue, L., Li, X., Liao, Y., Xing, L., Xu, M., and Li, W., J. Solid State Electrochem., 2015, vol. 19, p. 569.CrossRefGoogle Scholar
  9. 9.
    Matsuda, K. and Taniguchi, I., J. Power Sources, 2004, vol. 132, p. 156.CrossRefGoogle Scholar
  10. 10.
    Lee, D.K. and Park, S.H., J. Power Sources, 2006, vol. 162, p. 1346.CrossRefGoogle Scholar
  11. 11.
    Lengyel, M. and Atlas, G., J. Power Sources, 2014, vol. 262, p. 286.CrossRefGoogle Scholar
  12. 12.
    Wang, Zh., Dong, H., and Chen, L., J. Solid State Ionics, 2004, vol. 175, p. 239.CrossRefGoogle Scholar
  13. 13.
    Gubin, S.P., Yurkov, G.Yu., and Kosobudsky, I.D., Int. J. Mater. Prod. Technol., 2005, vol. 23, p. 2.CrossRefGoogle Scholar
  14. 14.
    Gubin, S.P. and Yurkov, G.Yu., Russ. J. Inorg. Chem., 2002, vol. 47, suppl. 1, p. 32.Google Scholar
  15. 15.
    Cheglakov, A.V., Kornilov, D.Yu., Voronov, V.A., Gubin, S.P., and Geller, M.M., RF Patent 2536649, 2013.Google Scholar
  16. 16.
    Voronov, V.A. and Gubin, S.P., Inorg. Mater., 2015, vol. 51, no. 11, p. 1151.CrossRefGoogle Scholar
  17. 17.
    Voronov, V.A. and Gubin, S.P., Inorg. Mater., 2014, vol. 50, no. 4, p. 409.CrossRefGoogle Scholar
  18. 18.
    Ohzuku, T. and Makimura, Y., Chem. Lett., 2001, vol. 30, no. 7, p. 642.CrossRefGoogle Scholar
  19. 19.
    Johnson, C.S., Kim, J-S., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Electrochem. Commun., 2004, p. 1085.Google Scholar
  20. 20.
    Thackeray, M.M., Kang, S.-H., and Johnson, C.S., J. Mater. Chem., 2007, vol. 17, p. 3112.CrossRefGoogle Scholar
  21. 21.
    Sun, Y. and Ouyang, C., J. Electrochem. Soc., 2004, vol. 151, p. 504.CrossRefGoogle Scholar
  22. 22.
    He, Y.S., Ma, Z.F., and Jiang, Y., J. Power Sources, 2007, vol. 163, p.1053.Google Scholar
  23. 23.
    Ju, J.H. and Ryu, K.S., J. Alloys Compd., 2011, vol. 509, p. 7985.CrossRefGoogle Scholar
  24. 24.
    Sun, Y., Ouyang, C., Wang, Z., and Huang, L., J. Electrochem. Soc., 2004, vol. 151, p. 504.CrossRefGoogle Scholar
  25. 25.
    Voronov, V.A., Shvetsov, A.O., Gubin, S.P., Cheglakov, A.V., Kornilov, D.Yu., Karaseva, A.S., Krasnova, E.S., and Tkachev, S.V., Zh. Perspekt. Mater., 2016, no. 8, p. 5.Google Scholar
  26. 26.
    Koyama, Y., Yabuuchi, N., and Tanaka, I., J. Electrochem. Soc., 2004, vol. 151, p. 1545.CrossRefGoogle Scholar
  27. 27.
    Noh, H.J., J. Power Sources, 2013, vol. 233, p. 121.CrossRefGoogle Scholar
  28. 28.
    Cao, H., Zhang, Y., and Zhang, J., Solid State Ionics, 2005, vol. 176, p. 1207.CrossRefGoogle Scholar
  29. 29.
    McIntyre, N.S. and Cook, M.G., Anal. Chem., 1975, vol. 47, p. 2208.CrossRefGoogle Scholar
  30. 30.
    Li, C.P., Proctor, A., and Hercules, D.M., Appl. Spectrosc., 1984, vol. 38, p. 880.CrossRefGoogle Scholar
  31. 31.
    Tran, N., Croguennec, L., and Jordy, C., Solid State Ionics, 2005, vol. 176, p. 1539.CrossRefGoogle Scholar
  32. 32.
    Kosova, N.V., Devyatkina, E.T., and Kaichev, V.V., J. Power Sources, 2007, 174, p. 965.Google Scholar
  33. 33.
    Voronov, V.A., Shvetsov, A.O., Gubin, S.P., Cheglakov, A.V., Kornilov, D.Yu., Karaseva, A.S., Krasnova, E.S., Tkachev, S.V., Russ. J. Inorg. Chem., 2016, vol. 51, p. 1153.CrossRefGoogle Scholar
  34. 34.
    Johnson, C.S., Li, N., Lefief, C., Vaughey, J.T., and Thackeray, M.M., Chem. Mater., 2008, vol. 20, p. 6095.CrossRefGoogle Scholar
  35. 35.
    Yabuuchi, N. and Ohzuku, T., J. Power Sources, 2003, vols. 119–121, p.171.Google Scholar
  36. 36.
    Liao, P.Y., Duh, J.G., and Sheen, S.R., J. Electrochem. Soc., 2005, vol. 152A, p. 1695.CrossRefGoogle Scholar
  37. 37.
    Cao, H., Zhang, Y., Zhang, J., and Xia, B., Solid State Ionics, 2005, vol. 176, p. 1207.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Voronov
    • 1
    • 2
    Email author
  • S. P. Gubin
    • 1
    • 2
  • A. V. Cheglakov
    • 1
  • D. Yu. Kornilov
    • 1
  • A. S. Karaseva
    • 1
  • E. S. Krasnova
    • 1
  • S. V. Tkachev
    • 1
    • 2
  1. 1.AkKo LabMoscowRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations