Advertisement

Russian Journal of Electrochemistry

, Volume 53, Issue 7, pp 721–727 | Cite as

Electrochemical reduction and electric conductivity of graphene oxide films

  • A. Yu. RychagovEmail author
  • S. P. Gubin
  • P. N. Chuprov
  • D. Yu. Kornilov
  • A. S. Karaseva
  • E. S. Krasnova
  • V. A. Voronov
  • S. V. Tkachev
Article

Abstract

The types of cells and methods of electrochemical reduction of graphene oxide films were described. The possibility of creating ultrathin membrane–electrode assemblies of supercapacitor cells was demonstrated. The peculiarities of the electrochemical behavior of films of different thicknesses that contact with carbon and metal current collectors were shown. The limiting charge (1500–2000 C/g) for complete electrochemical reduction of graphene oxide was determined. Possible mechanisms of proton conductivity along the basal faces of graphene oxide flakes were proposed. The nature of the current collector was shown to affect the electron–hole conductivity of graphene oxide films and the observed contact potential difference.

Keywords

electrochemical reduction graphene oxide films proton conductivity semiconductor properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., Chem. Soc. Rev., 2010, vol. 39, p. 228.CrossRefGoogle Scholar
  2. 2.
    Gubin, S.P. and Tkachev, S.V., Grafen i rodstvennye nanoformy ugleroda (Graphene and Related Forms of Carbon), Moscow Lenand, 2015.Google Scholar
  3. 3.
    Kauppila, L., Kunnas, P., Damlin, P., Viinikanoja, A., and Kvatnston, C., Electrochim. Acta, 2013, vol. 89, p. 84.CrossRefGoogle Scholar
  4. 4.
    Gubin, S.P., Rychagov, A.Yu., Chuprov, P.N., Tkachev, S.V., Kornikov, D.Yu., Almazova, A.S., Krasnova, E.S., and Voronov, V.A., Elektrokhim. Energ., 2015, vol. 15, no. 2, p. 57.Google Scholar
  5. 5.
    Chua, C.K. and Pumera, M., Chem. Soc. Rev., 2014, vol. 43, p. 291.CrossRefGoogle Scholar
  6. 6.
    Pei, S. and Cheng, H.-M., Carbon, 2012, vol. 50, p. 3210.CrossRefGoogle Scholar
  7. 7.
    Xiong, Z., Da Cheng, Z., Yao, C., Xian Zhong, S., and Yan Wei, M., Chin. Sci. Bull., 2012, vol. 57, no. 23, p. 3045.CrossRefGoogle Scholar
  8. 8.
    Shao, Y., Wang, J., Engelhard, M., Wang, C., and Lin, Y., J. Mater. Chem., 2010, vol. 20, p. 743.CrossRefGoogle Scholar
  9. 9.
    Tkachev, S.V., Buslaeva, E.Yu., Naumkin, A.V., Kotova, S.L., Laure, I.V., and Gubin, S.P., Neorg. Mater., 2012, vol. 48, p. 909.CrossRefGoogle Scholar
  10. 10.
    Rychagov, A.Yu. and Volfkovich, Yu.M., Russ. J. Electrochem., 2009, vol. 45, p. 304.CrossRefGoogle Scholar
  11. 11.
    Zhang, Q., Scrafford, K., Li, M., Cao, Z., Xia, Z., Ajayan, P.M., and Wei, B., Nano Lett., 2014, vol. 14, p. 1938.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. Yu. Rychagov
    • 1
    Email author
  • S. P. Gubin
    • 2
  • P. N. Chuprov
    • 2
  • D. Yu. Kornilov
    • 2
  • A. S. Karaseva
    • 2
  • E. S. Krasnova
    • 2
  • V. A. Voronov
    • 2
  • S. V. Tkachev
    • 2
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.AkKo LabMoscowRussia

Personalised recommendations