Skip to main content

Formation of NiO/YSZ functional anode layers of solid oxide fuel cells by magnetron sputtering


The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte.

This is a preview of subscription content, access via your institution.


  1. Kennouche, D., Hong, J., Noh, H.S., Son, J.W., and Barnett, S.A., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 15249.

    Article  CAS  Google Scholar 

  2. Noh, H.S., Yoon, K.J., Kim, B.K., Je, H.J., Lee, H.W., Lee, J.H., and Son, J.W., J. Power Sources, 2014, vol. 247, p. 105.

    Article  CAS  Google Scholar 

  3. Park, J.H., Han, S.M., Yoon, K.J., Kim, H., Hong, J., Kim, B.K., Lee, J.H., and Son, J.W., J. Power Sources, 2016, vol. 315, p. 324.

    Article  CAS  Google Scholar 

  4. Jou, S. and Wu, T.H., J. Phys. Chem. Solids, 2008, vol. 69, p. 2804.

    Article  CAS  Google Scholar 

  5. Rezugina, E., Thomann, A.L., Hidalgo, H., Brault, P., Dolique, V., and Tessier, Y., Surf. Coat. Technol., 2010, vol. 204, p. 2376.

    Article  CAS  Google Scholar 

  6. Garcia-Garcia, F.J., Yubero, F., González-Elipe, A.R., Balomenou, S.P., Tsiplakides, D., Petrakopoulou, I., and Lambert, R.M., Int. J. Hydrogen Energy, 2015, vol. 40, p. 7382.

    Article  CAS  Google Scholar 

  7. Garcia-Garcia, R.M., Yubero, F.J., Espinós, F., González-Elipe, J.P., and Lambert, A.R., J. Power Sources, 2016, vol. 324, p. 679.

    Article  CAS  Google Scholar 

  8. Noh, H.S., Son, J.W., Lee, H., Song, H.S., Lee, H.W., and Lee, J.H., J. Electrochem. Soc., 2009, vol. 156, p. 1484.

    Article  Google Scholar 

  9. Meng, B., Sun, Y., He, X.D., and Li, M.W., Mater. Sci. Technol., 2008, vol. 24, p. 997.

    Article  CAS  Google Scholar 

  10. Barranco, A., Borras, A., Gonzalez-Elipe, A.R., and Palmero, A., Prog. Mater. Sci., 2016, vol. 76, p. 59.

    Article  CAS  Google Scholar 

  11. Solovyev, A.A., Sochugov, N.S., Ionov, I.V., Shipilova, A.V., and Kovalchuk, A.N., Russ. J. Electrochem., 2014, vol. 50, p. 647.

    Article  Google Scholar 

  12. Muecke, U.P., Akiba, K., Infortuna, A., Salkus, T., Stus, N.V., and Gauckler, L.J., Solid State Ionics, 2008, vol. 178, p. 1762.

    Article  CAS  Google Scholar 

  13. Noh, H.S., Son, J.W., Lee, H., Ji, H.I., Lee, J.H., and Lee, H.W., J. Eur. Ceram. Soc., 2010, vol. 30, p. 3415.

    Article  CAS  Google Scholar 

  14. Solovyev, A.A., Sochugov, N.S., Rabotkin, S.V., Shipilova, A.V., Ionov, I.V., Kovalchuk, A.N., and Borduleva, A.O., Appl. Surf. Sci., 2014, vol. 310, p. 272.

    Article  CAS  Google Scholar 

  15. Solovyev, A.A., Sochugov, N.S., Shipilova, A.V., Efimova, K.B., and Tumashevskaya, A.E., Russ. J. Electrochem., 2011, vol. 47, p. 494.

    Article  Google Scholar 

  16. Bredikhin, I.S., Bredikhin, S.I., and Kveder, V.V., ECS Trans., 2009, vol. 25, no. 2, p. 1967.

    Article  CAS  Google Scholar 

  17. Muecke, U.P., Graf, S., Rhyner, U., and Gauckler, L.J., Acta Mater., 2008, vol. 56, p. 677.

    Article  CAS  Google Scholar 

  18. Noh, H.S., Park, J.S., Son, J.W., Lee, H., Lee, J.H., and Lee, H.W., J. Am. Ceram. Soc., 2009, vol. 92, p. 3059.

    Article  CAS  Google Scholar 

  19. Kharton, V.V., Marques, F.M.B., and Atkinson, A., Solid State Ionics, 2004, vol. 174, p. 135.

    Article  CAS  Google Scholar 

  20. Cassidy, M., Lindsay, G., and Kendall, K., J. Power Sources, 1996, vol. 61, p. 189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. A. Solov’ev.

Additional information

Original Russian Text © I.V. Ionov, A.A. Solov’ev, A.M. Lebedinskii, A.V. Shipilova, E.A. Smolyanskii, A.N. Koval’chuk, A.L. Lauk, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 6, pp. 751–760.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionov, I.V., Solov’ev, A.A., Lebedinskii, A.M. et al. Formation of NiO/YSZ functional anode layers of solid oxide fuel cells by magnetron sputtering. Russ J Electrochem 53, 670–676 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: