Russian Journal of Electrochemistry

, Volume 53, Issue 6, pp 670–676 | Cite as

Formation of NiO/YSZ functional anode layers of solid oxide fuel cells by magnetron sputtering

  • I. V. Ionov
  • A. A. Solov’evEmail author
  • A. M. Lebedinskii
  • A. V. Shipilova
  • E. A. Smolyanskii
  • A. N. Koval’chuk
  • A. L. Lauk


The decrease in the polarization resistance of the anode of solid-oxide fuel cells (SOFCs) due to the formation of an additional NiO/(ZrO2 + 10 mol % Y2O3) (YSZ) functional layer was studied. NiO/YSZ films with different NiO contents were deposited by reactive magnetron sputtering of Ni and Zr–Y targets. The elemental and phase composition of the films was adjusted by regulating oxygen flow rate during the sputtering. The resulting films were studied by scanning electron microscopy and X-ray diffractometry. Comparative tests of planar SOFCs with a NiO/YSZ anode support, NiO/YSZ functional nanostructured anode layer, YSZ electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 (LSCF/CGO) cathode were performed. It was shown that the formation of a NiO/YSZ functional nanostructured anode leads to a 15–25% increase in the maximum power density of fuel cells in the working temperature range 500–800°C. The NiO/YSZ nanostructured anode layers lead not only to a reduction of the polarization resistance of the anode, but also to the formation of denser electrolyte films during subsequent magnetron sputtering of electrolyte.


SOFC magnetron sputtering nanostructured electrode thin-film anode polarization resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennouche, D., Hong, J., Noh, H.S., Son, J.W., and Barnett, S.A., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 15249.CrossRefGoogle Scholar
  2. 2.
    Noh, H.S., Yoon, K.J., Kim, B.K., Je, H.J., Lee, H.W., Lee, J.H., and Son, J.W., J. Power Sources, 2014, vol. 247, p. 105.CrossRefGoogle Scholar
  3. 3.
    Park, J.H., Han, S.M., Yoon, K.J., Kim, H., Hong, J., Kim, B.K., Lee, J.H., and Son, J.W., J. Power Sources, 2016, vol. 315, p. 324.CrossRefGoogle Scholar
  4. 4.
    Jou, S. and Wu, T.H., J. Phys. Chem. Solids, 2008, vol. 69, p. 2804.CrossRefGoogle Scholar
  5. 5.
    Rezugina, E., Thomann, A.L., Hidalgo, H., Brault, P., Dolique, V., and Tessier, Y., Surf. Coat. Technol., 2010, vol. 204, p. 2376.CrossRefGoogle Scholar
  6. 6.
    Garcia-Garcia, F.J., Yubero, F., González-Elipe, A.R., Balomenou, S.P., Tsiplakides, D., Petrakopoulou, I., and Lambert, R.M., Int. J. Hydrogen Energy, 2015, vol. 40, p. 7382.CrossRefGoogle Scholar
  7. 7.
    Garcia-Garcia, R.M., Yubero, F.J., Espinós, F., González-Elipe, J.P., and Lambert, A.R., J. Power Sources, 2016, vol. 324, p. 679.CrossRefGoogle Scholar
  8. 8.
    Noh, H.S., Son, J.W., Lee, H., Song, H.S., Lee, H.W., and Lee, J.H., J. Electrochem. Soc., 2009, vol. 156, p. 1484.CrossRefGoogle Scholar
  9. 9.
    Meng, B., Sun, Y., He, X.D., and Li, M.W., Mater. Sci. Technol., 2008, vol. 24, p. 997.CrossRefGoogle Scholar
  10. 10.
    Barranco, A., Borras, A., Gonzalez-Elipe, A.R., and Palmero, A., Prog. Mater. Sci., 2016, vol. 76, p. 59.CrossRefGoogle Scholar
  11. 11.
    Solovyev, A.A., Sochugov, N.S., Ionov, I.V., Shipilova, A.V., and Kovalchuk, A.N., Russ. J. Electrochem., 2014, vol. 50, p. 647.CrossRefGoogle Scholar
  12. 12.
    Muecke, U.P., Akiba, K., Infortuna, A., Salkus, T., Stus, N.V., and Gauckler, L.J., Solid State Ionics, 2008, vol. 178, p. 1762.CrossRefGoogle Scholar
  13. 13.
    Noh, H.S., Son, J.W., Lee, H., Ji, H.I., Lee, J.H., and Lee, H.W., J. Eur. Ceram. Soc., 2010, vol. 30, p. 3415.CrossRefGoogle Scholar
  14. 14.
    Solovyev, A.A., Sochugov, N.S., Rabotkin, S.V., Shipilova, A.V., Ionov, I.V., Kovalchuk, A.N., and Borduleva, A.O., Appl. Surf. Sci., 2014, vol. 310, p. 272.CrossRefGoogle Scholar
  15. 15.
    Solovyev, A.A., Sochugov, N.S., Shipilova, A.V., Efimova, K.B., and Tumashevskaya, A.E., Russ. J. Electrochem., 2011, vol. 47, p. 494.CrossRefGoogle Scholar
  16. 16.
    Bredikhin, I.S., Bredikhin, S.I., and Kveder, V.V., ECS Trans., 2009, vol. 25, no. 2, p. 1967.CrossRefGoogle Scholar
  17. 17.
    Muecke, U.P., Graf, S., Rhyner, U., and Gauckler, L.J., Acta Mater., 2008, vol. 56, p. 677.CrossRefGoogle Scholar
  18. 18.
    Noh, H.S., Park, J.S., Son, J.W., Lee, H., Lee, J.H., and Lee, H.W., J. Am. Ceram. Soc., 2009, vol. 92, p. 3059.CrossRefGoogle Scholar
  19. 19.
    Kharton, V.V., Marques, F.M.B., and Atkinson, A., Solid State Ionics, 2004, vol. 174, p. 135.CrossRefGoogle Scholar
  20. 20.
    Cassidy, M., Lindsay, G., and Kendall, K., J. Power Sources, 1996, vol. 61, p. 189.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • I. V. Ionov
    • 1
    • 2
  • A. A. Solov’ev
    • 1
    • 2
    Email author
  • A. M. Lebedinskii
    • 2
  • A. V. Shipilova
    • 1
    • 2
  • E. A. Smolyanskii
    • 2
  • A. N. Koval’chuk
    • 2
  • A. L. Lauk
    • 2
  1. 1.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations