Skip to main content
Log in

Electroconvection in systems with heterogeneous ion-exchange membranes after thermal modification

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

It is found that the variations in the structure (morphology and microrelief) and chemical composition of surface of heterogeneous ion-exchange membranes as a result of thermal modification have different effects on the current—voltage characteristics and conditions for the generation of electroconvective instability at the membrane/solution interface under intense current modes. After thermal treatment of strongly acidic sulfocation-exchange membrane, which is characterized by a low catalytic activity in the reaction of water dissociation and a high thermal stability of fixed groups, a fraction of conducting surface area increases and the membrane microrelief develops. As a result, the diffusion limiting current density increases and the length of plateau of the current—voltage curve decreases. Therewith, the thickness of the region of electroconvective instability of solution in the near-membrane region increases and the polarization of electromembrane system, at which the mode of unstable electroconvection is reached, decreases. The thermodestruction of strongly basic anion-exchange membranes, conversely, leads to suppression of electroconvection and an increase in the length of plateau of the current—voltage curve due to the formation of fixed weakly basic amino groups, which are catalytically active in the reaction of water dissociation. A linear correlation is found between the dimensions of the region of electroconvective instability and a fraction of weakly basic functional amino groups in the composition of strongly basic membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubinshtein, I., Zaltzman, B., Pretz, J., and Linder, K., Russ. J. Electrochem., 2002, vol. 38, p. 853.

    Article  CAS  Google Scholar 

  2. Zabolotskii, V.I., Nikonenko, V.V., Urtenov, M.Kh., Lebedev, K.A., and Bugakov, V.V., Russ. J. Electrochem., 2012, vol. 48, p. 692.

    Article  CAS  Google Scholar 

  3. Nikonenko, V.V., Kovalenko, A.V., Urtenov, M.K., Pismenskaya, N.D., Han, J., Sistat, P., and Pourcelly, G., Desalination, 2014, vol. 342, p. 85.

    Article  CAS  Google Scholar 

  4. Belova, E., Lopatkova, G., Pismenskaya, N., Nikonenko, V., Larchet, C., and Pourcelly, G., J. Phys. Chem. B, 2006, vol. 110, p. 13458.

    Article  CAS  Google Scholar 

  5. Vasil’eva, V.I., Zhil’tsova, A.V., Malykhin, M.D., Zabolotskii, V.I., Lebedev, K.A., Chermit, R.Kh., and Sharafan, M.V., Russ. J. Electrochem., 2014, vol. 50, p. 120.

    Article  Google Scholar 

  6. Vasil’eva, V.I., Shaposhnik, V.A., Grigorchuk, O.V., and Petrunya, I.P., Desalination, 2006, vol. 192, p. 408.

    Article  Google Scholar 

  7. Vasil’eva, V.I., Shaposhnik, V.A., Zabolotskii, V.I., Lebedev, K.A., and Petrunya, I.P., Sorbtsionnye Khromatogr. Protsessy, 2005, vol. 5, no. 4, p. 545.

    Google Scholar 

  8. Aritomi, T., Boomgaard, Th., and Srathman, H., Desalination, 1996, vol. 104, p. 13.

    Article  CAS  Google Scholar 

  9. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Usp. Khim., 1988, vol. 57, no. 6, p. 1403.

    CAS  Google Scholar 

  10. Shaposhnik, V.A., Kinetika elektrodializa (Kinetics of Electrodialysis), Voronezh: Voronezh Gos. Univ., 1989.

    Google Scholar 

  11. Shaposhnik, V.A., Vasil’eva, V.I., and Grigorchuk, O.V., Adv. Colloid Interface Sci., 2008, vol. 139, p. 74.

    Article  CAS  Google Scholar 

  12. Pis’menskaya, N.D., Cand. Sci. (Chem.) Dissertation, Krasnodar, 1989.

    Google Scholar 

  13. Shaposhnik, V.A., Vasil’eva, V.I., and Reshetnikova, E.V., Russ. J. Electrochem., 2000, vol. 36, p. 773.

    Article  CAS  Google Scholar 

  14. Shaposhnik, V.A.‚ Vasil’eva, V.I., Ugryumov, R.B., and Kozhevnikov, M.S., Russ. J. Electrochem., 2006, vol. 42, p. 531.

    Article  CAS  Google Scholar 

  15. Pevnitskaya, M.V., Elektrokhimiya, 1992, vol. 28, p. 1708.

    CAS  Google Scholar 

  16. Akberova, E.M., Kondensirovannye Sredy Mezhfaznye Granitsy, 2014, vol. 16, p. 147.

    CAS  Google Scholar 

  17. De Barros Machado, M. and Santiago, V.M.J., Electrodialysis and Water Reuse. Novel Approaches, Berlin: Springer, 2014, p. 86.

    Google Scholar 

  18. Shaposhnik, V.A. and Zolotareva, R.I., Elektrokhimiya, 1979, vol. 15, p. 1545.

    CAS  Google Scholar 

  19. Greben’, V.P., Drachev, G.Yu., and Kovarskii, N.Ya., Elektrokhimiya, 1989, vol. 25, p. 488.

    Google Scholar 

  20. Berezina, N.P., Ivina, O.P., and Rubinina, D.V., Diagnostika ionoobmennykh membran posle real’nogo elektrodializa (Diagnostics of Ion-Exchange Membranes after Real Electrodialysis), Krasnodar: Kuban. Gos. Univ., 1990.

    Google Scholar 

  21. Dammak, L., Larchet, Ch., and Grande, D., Sep. Purif. Technol., 2009, vol. 69, p. 43.

    Article  CAS  Google Scholar 

  22. Kedem, O., Cohen, J., Warshawsky, A., and Kahana, N., Desalination, 1983, vol. 46, p. 41.

    Article  Google Scholar 

  23. Smagin, V.U., Zhurov, N.N., Yaroshevsky, D.A., and Yevdokimov, O.V., Desalination, 1983, vol. 46, p. 253.

    Article  CAS  Google Scholar 

  24. Bauer, B., Strathmann, H., and Effenberger, F., Desalination, 1990, vol. 79, p. 125.

    Article  CAS  Google Scholar 

  25. Hwang, U.-S. and Choi, J.-H., Sep. Purif. Technol., 2006, vol. 48, p. 16.

    Article  CAS  Google Scholar 

  26. Choi, J-H. and Moon, S-H., J. Colloid Interface Sci., 2003, vol. 265, p. 93.

    Article  CAS  Google Scholar 

  27. Sata, T., Tsujimoto, M., Yamaguchi, T., and Matsusaki, K., J. Membr. Sci., 1996, vol. 112, p. 161.

    Article  CAS  Google Scholar 

  28. Zabolotskii, V.I., Bugakov, V.V., Sharafan, M.V., and Chermit, R.Kh., Russ. J. Electrochem., 2012, vol. 48, p. 650.

    Article  CAS  Google Scholar 

  29. Zabolotskii, V.I., Chermit, R.Kh., and Sharafan, M.V., Russ. J. Electrochem., 2014, vol. 50, p. P.38.

    Article  CAS  Google Scholar 

  30. Mel’nik, N.A., Shevtsova, K.A., Pis’menskaya, N.D., and Nikonenko, V.V., Kondensirovannye Sredy Mezhfaznye Granitsy, 2010, vol. 12, no. 3, p. 233.

    Google Scholar 

  31. Vasil’eva, V.I., Akberova, E.M., Zhil’tsova, A.V., Chernykh, E.I., Sirota, E.A., and Agapov, B.L., Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2013, no. 5, p. 833.

    Article  Google Scholar 

  32. Sirota, E.A., Kranina, N.A., Vasil’eva, V.I., Malykhin, M.D., and Selemenev, V.F., Vestn. Voronezh. Gos. Univ. Ser.: Khim. Biol. Formats., 2011, no. 2, p. 53.

    Google Scholar 

  33. Vasil’eva, V.I., Akberova, E.M., Shaposhnik, V.A., and Malykhin, M.D., Russ. J. Electrochem., 2014, vol. 50, p. 789.

    Article  Google Scholar 

  34. Vasil’eva, V.I., Pis’menskaya, N.D., Akberova, E.M., and Nebavskaya, K.A., Russ. J. Phys. Chem. A, 2014, vol. 88, p. 1293.

    Article  Google Scholar 

  35. Akberova, E.M. and Malykhin, M.D., Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no. 2, p. 232.

    CAS  Google Scholar 

  36. Vasil’eva, V.I., Akberova, E.M., Demina, O.A., Kononenko, N.A., and Malykhin, M.D., Russ. J. Electrochem., 2015, vol. 51, p. P.627.

    Article  Google Scholar 

  37. Zabolotskii, V.I., Lebedev, K.A., Urtenov, M.Kh., Nikonenko, V.V., Vasilenko, P.A., Shaposhnik, V.A., and Vasil’eva, V.I., Russ. J. Electrochem., 2013, vol. 49, p. P.369.

    Article  CAS  Google Scholar 

  38. Rubinstein, I. and Maletzki, F., J. Chem. Soc., Faraday Trans. 2, 1991, vol. 87, p. 2079.

    Article  CAS  Google Scholar 

  39. Rubinstein, I., Zaltzman, B., and Kedem, O., J. Membr. Sci., 1997, vol. 125, p. 17.

    Article  CAS  Google Scholar 

  40. Kovalenko, A.V., Zabolotskii, V.I., Nikonenko, V.V., and Urtenov, M.Kh., Politemat. Setevoi Elektron. Nauchn. Zh. Kuban. Gos. Agrar. Univ., 2014, no.14.

    Google Scholar 

  41. Uzdenova, A.M., Kovalenko, A.V., and Urtenov, M.Kh., Matematicheskie modeli elektrokonvektsii v elektromembrannykh sistemakh. (Mathematical Models of Electroconvection in the Electromembrane Systems), Karachaevsk: Karach.—Cherkess. Gos. Univ., 2011.

    Google Scholar 

  42. Pis’menskaya, N.D., Nikonenko, V.V., Mel’nik, N.A., Pourcelli, G., and Larchet, G., Russ. J. Electrochem., 2012, vol. 48, p. 610.

    Article  Google Scholar 

  43. Choi, J.-H., Lee, H.-J., and Moon, S.-H., J. Colloid Interface Sci., 2001, vol. 238, no. 1, p. 188.

    Article  CAS  Google Scholar 

  44. Ibanez, R., Stamatialis, D.F., and Wessling, M., J. Membr. Sci., 2004, vol. 239, no. 1, p. 119.

    Article  CAS  Google Scholar 

  45. Vasil’eva, V.I., Zhil’tsova, A.V., Akberova, E.M., and Fataeva, A.I., Kondensirovannye Sredy Mezhfaznye Granitsy, 2014, vol. 16, no. 3, p. 257.

    Google Scholar 

  46. Urtenov, M.K., Uzdenova, A.M., Kovalenko, A.V., Nikonenko, V.V., Pismenskaya, N.D., Vasil’eva, V.I., Sistat, P., and Pourcelly, G., J. Membr. Sci., 2013, vol. 447, p. 190.

    Article  CAS  Google Scholar 

  47. Zhil’tsova, A.V., Vasil’eva, V.I., Malykhin, M.D., Pis’menskaya, N.D., and Mel’nik, N.A., Vestn. Voronezh. Gos. Univ. Ser.: Khim. Biol. Formats., 2013, no. 2, p. 35.

    Google Scholar 

  48. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G., and Larchet, C., Adv. Colloid Interface Sci., 2010, vol. 160, p. 101.

    Article  CAS  Google Scholar 

  49. Nikonenko, V.V., Yaroslavtsev, A.B., and Pourcelly, G., in Ionic Interactions in Natural and Synthetic Macromolecules, Ciferri, A. and Perico, A., Eds., Wiley, 2012, p. 267.

  50. Akberova, E.M., Vasil’eva, V.I., and Malykhin, M.D., Kondensirovannye Sredy Mezhfaznye Granitsy, 2015, vol. 17, no. 3, p. 273.

    CAS  Google Scholar 

  51. Zabolotskii, V.I., Sharafan, M.V., and Chermit, R.Kh., RF Patent no. 2559486, 2013.

    Google Scholar 

  52. Berezina, N.P., Elektrokhimiya membrannykh sistem (Electrochemistry of Membrane Systems), Krasnodar: Kuban. Gos. Univ., 2009.

    Google Scholar 

  53. Polyanskii, N.G. and Shaburov, M.A., Zh. Anal. Khim., 1963, vol. 18, p. 304.

    CAS  Google Scholar 

  54. Vasil’eva, V.I., Shaposhnik, V.A., Grigorchuk, O.V., and Malykhin, M.D., Russ. J. Electrochem., 2002, vol. 38, p. 846.

    Article  Google Scholar 

  55. Maletzki, F., Rosler, H.-W., and Staude, E.J., J. Membr. Sci., 1992, vol. 71, p. 105.

    Article  CAS  Google Scholar 

  56. Pis’menskaya, N.D., Nikonenko, V.V., Belova, E.I., Lopatkova, G.Yu., Sistat, Ph., Pourcelly, G., and Larshe, K., Russ. J. Electrochem., 2007, vol. 43, p. 307.

    Article  Google Scholar 

  57. Sirota, E.A., Vasil’eva, V.I., and Akberova, E.M., Otsenka poverkhnostnoi i ob’emnoi neodnorodnosti geterogennykh ionoobmennykh membran po elektronnomikroskopicheskim snimkam (Estimation of Surface and Bulk Inhomogeneity of Heterogeneous Ion-Exchange Membranes by SEM Images. A Computer Program), Svid. Gos. Reg. no. 2012617310, 2012.

    Google Scholar 

  58. Vasil’eva, V.I., Kranina, N.A., Malykhin, M.D., Akberova, E.M., and Zhil’tsova, A.V., Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2013, no. 1, p. 144.

    Article  Google Scholar 

  59. Polyanskii, N.G. and Tulupov, P.E., Usp. Khim., 1971, vol. 11, no. 12, p. 2250.

    Google Scholar 

  60. Sata, T., Tsujimoto, M., Yamaguchi, T., and Matsusaki, K., J. Membr. Sci., 1996, vol. 112, p. 161.

    Article  CAS  Google Scholar 

  61. Hwang, U.-S. and Choi, J.-H., Sep. Purif. Technol., 2006, vol. 48, p. 16.

    Article  CAS  Google Scholar 

  62. Rubinstein, I. and Zaltzman, B., Phys. Rev. E, 2000, vol. 62, p. P. 2238.

    Article  CAS  Google Scholar 

  63. Knyaginicheva, E.V., Belashova, E.D., Sarapulova, V.V., and Pis’menskaya, N.D., Kondensirovannye Sredy Mezhfaznye Granitsy, 2014, vol. 16, no. 3, p. 282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasil’eva.

Additional information

Original Russian Text © V.I. Vasil’eva, E.M. Akberova, V.I. Zabolotskii, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 4, pp. 452–465.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’eva, V.I., Akberova, E.M. & Zabolotskii, V.I. Electroconvection in systems with heterogeneous ion-exchange membranes after thermal modification. Russ J Electrochem 53, 398–410 (2017). https://doi.org/10.1134/S1023193517040127

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517040127

Keywords

Navigation