Skip to main content
Log in

Application of anodized edge-plane pyrolytic graphite electrode for analysis of clindamycin in pharmaceutical formulations and human urine samples

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Different graphitic carbon-based electrode materials were evaluated for direct electro-oxidation of clindamycin and electroanalytical parameters such as sensitivity, residual background current, and signal-tobackground current ratio were compared to select the best one for the clindamycin electroanalysis. Such electrode materials include glassy carbon, carbon paste, pyrolytic graphite (edge-plane and basal-plane), carbon nanotube, reduced graphene oxide, and carbon black. The edge-plane pyrolytic graphite electrode after a simple and fast electrochemical pretreatment showed superior performance compared with the other carbon electrodes. Raman and Fourier transform infrared spectroscopy were employed to analyze the surface microstructure and chemical bonding of the carbon materials and scanning electron microscopy was used to study their surface morphologic features. The applicability of the electrochemically activated edge-plane pyrolytic graphite electrode for the determination of clindamycin in pharmaceutical formulations and human urine samples was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daum, R.S. and Engl, N., J. Med., 2007, vol. 357, p. 380.

    CAS  Google Scholar 

  2. Batzias, G.C., Delis, G.A., and Koutsoviti-Papadopoulou, M., J. Pharm. Biomed. Anal., 2004, vol. 35, p. 545.

    Article  CAS  Google Scholar 

  3. Catena, E., Perez, G., and Sadaba, B., J. Pharm. Biomed. Anal., 2009, vol. 50, p. 649.

    Article  CAS  Google Scholar 

  4. Cho, S.H., Im, H.T., and Park, W.S., Biomed. Chromatogr., 2005, vol. 19, p. 783.

    Article  CAS  Google Scholar 

  5. El-Adl, S.M., Sadek, M.H., and Hassan, M.H., Asian J. Res. Pharm. Sci., 2014, vol. 4, p. 179.

    Google Scholar 

  6. El-Yazbi, F.A. and Blaih, S.M., Analyst, 1993, vol. 118, p. 577.

    Article  CAS  Google Scholar 

  7. Frank, D., Montsko, G., and Juricskay, I., J. Chemother., 2011, vol. 23, p. 282.

    Article  CAS  Google Scholar 

  8. Liang, X., Du, L., and Su, F., Magn. Reson. Chem., 2014, vol. 52, p. 178.

    Article  CAS  Google Scholar 

  9. Martens-Lobenhoffer, J. and Banditt, P., J. Chromatogr. B: Biomed. Sci. Appl., 2001, vol. 755, p. 143.

    Article  CAS  Google Scholar 

  10. Mifsud, M., Vella, J., and Ferrito, V., J. Chem. Pharm. Res., 2014, vol. 6, p. 696.

    CAS  Google Scholar 

  11. Platzer, J. and White, B.A., J. Pharm. Biomed. Anal., 2006, vol. 41, p. 84.

    Article  CAS  Google Scholar 

  12. Rechberger, G.N., Fauler, G., and Windischhofer, W., Rapid Commun. Mass Spectrom., 2003, vol. 17, p. 135.

    Article  CAS  Google Scholar 

  13. Yu, L.L., Chao, C.K., and Liao, W.J., J. Chromatogr. B: Biomed. Sci. Appl., 1999, vol. 19, p. 287.

    Article  Google Scholar 

  14. Uslu, B. and Ozkan, S.A., Anal. Lett., 2007, vol. 40, p. 817.

    Article  CAS  Google Scholar 

  15. Uslu, B. and Ozkan, S.A., Comb. Chem. High. T. Scr., 2007, vol. 10, p. 495.

    CAS  Google Scholar 

  16. Kinoshita, K., Carbon, Electrochemical and Physicochemical Properties, New York: John Wiley and Sons, 1988.

    Google Scholar 

  17. McCreery, R.L., in Electroanalytical Chemistry, Bard, A.J., Ed., Vol. 17, New York: Marcel Dekker, 1991, pp. 221–374.

  18. McCreery, R.L., in Interfacial Electrochemistry, Wieckowski, A., Ed., New York: Dekker, 1999, pp. 631–647.

  19. McCreery, R.L., Chem. Rev., 2008, vol. 108, p. 2646.

    Article  CAS  Google Scholar 

  20. Pumera, M., Ambrosi, A., and Bonanni, A., Trend. Anal. Chem., 2010, vol. 29, p. 954.

    Article  CAS  Google Scholar 

  21. Shao, Y., Wang, J., and Wu, H., Electroanalysis, 2010, vol. 22, p. 1027.

    Article  CAS  Google Scholar 

  22. Wallace, G.G., Chen, J., and Li, D., J. Mater. Chem., 2010, vol. 20, p. 3553.

    Article  CAS  Google Scholar 

  23. Wu, Y., Ye, S., and Hu, S., J. Pharm. Biomed. Anal., 2006, vol. 41, p. 820.

    Article  CAS  Google Scholar 

  24. Habib, I.H.I., Rizk, M.S., and El-Aryan, Th.R., Pharm. Chem. J., 2011, vol. 44, p. 705.

    Article  CAS  Google Scholar 

  25. Wong, A., Razzino, C.A., Silva, T.A., and Fatibello-Filho, O., Sens. Actuat. B, 2016, vol. 231, p. 183.

    Article  CAS  Google Scholar 

  26. Norouzi, P., Larijani, B., Ezoddin, M., and Ganjali, M.R., Mater. Sci. Eng. C, 2008, vol. 28, p. 87.

    Article  CAS  Google Scholar 

  27. Hu, Y., Zhang, Z., Zhang, H., Yu, X., and Yao, S., Chem. J. Chin. U., 2009, vol. 30, p. 1703.

    CAS  Google Scholar 

  28. Banks, E. and Compton, R.G., Anal. Sci., 2005, vol. 21, p. 1263.

    Article  CAS  Google Scholar 

  29. Wang, Y., Alsmeyer, D.C., and McCreery, R.L., Chem. Mater., 1990, vol. 2, p. 557.

    Article  CAS  Google Scholar 

  30. Ray, K. and McCreery, R.L., Anal. Chem., 1997, vol. 69, p. 4680.

    Article  CAS  Google Scholar 

  31. Tuinstra, F. and Koenig, J.L., J. Chem. Phys., 1970, vol. 53, p. 1126.

    Article  CAS  Google Scholar 

  32. Poh, H.L. and Pumera, M., Chem. Asian J., 2012, vol. 7, p. 412.

    Article  CAS  Google Scholar 

  33. Banks, C.E. and Compton, R.G., Analyst, 2006, vol. 131, p. 15.

    Article  CAS  Google Scholar 

  34. Krivenko, A.G., Komarova, N.S., Stenina, E.V., Sviridova, L.N., Kurmaz, V.A., Kotkin, A.S., and Muradyan, V.E., Russ. J. Electrochem., 2006, vol. 42, p. 1047.

    Article  CAS  Google Scholar 

  35. Ambrosi, A., Sasaki, T., and Pumera, M., Chem. Asian J., 2010, vol. 5, p. 266.

    Article  CAS  Google Scholar 

  36. Wong, C.H.A., Ambrosi, A., and Pumera, M., Nanoscale, 2012, vol. 4, p. 4972.

    Article  Google Scholar 

  37. Bard, A.J. and Faulkner, L.R., Electrochemical Methods, New York: Wiley, 2001. 834 p.

    Google Scholar 

  38. Chang, M.J., Namgung, H., and Choi, H.D., Basic Clin. Pharmacol. Toxicol., 2012, vol. 110, p. 504.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Hadi.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 4, pp. 431–444.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadi, M., Honarmand, E. Application of anodized edge-plane pyrolytic graphite electrode for analysis of clindamycin in pharmaceutical formulations and human urine samples. Russ J Electrochem 53, 380–390 (2017). https://doi.org/10.1134/S1023193517040061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517040061

Keywords

Navigation