Skip to main content
Log in

Hopping charge transport in amorphous organic and inorganic materials with spatially correlated random energy landscape

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The general properties of the hopping transport of charge carriers in amorphous organic and inorganic materials are discussed. The case where the random energy landscape in the material is strongly spatially correlated is considered. This situation is typical of organic materials with the Gaussian density of states (DOS) and may also be realized in some materials with the exponential DOS. It is demonstrated that the different DOS types can lead to very different functional forms of the mobility field dependence even for the identical correlation function of random energy. Important arguments are provided in favor of the significant contribution of the local orientational order to the total magnitude of energetic disorder in organic materials. A simple but promising model of charge transport in highly anisotropic composites materials is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Günes, S., Neugebauer, H., and Sariciftci, N.S., Chem. Rev., 2007, vol. 107, p. 1324.

    Article  Google Scholar 

  2. Shinar, J. and Shinar, R., J. Phys. D, 2008, vol. 41, p. 133001.

    Article  Google Scholar 

  3. Kim, J.J., Han, M.K., and Noh, Y.Y., Semicond. Sci. Technol., 2011, vol. 26, p. 030301.

    Article  Google Scholar 

  4. Mabeck, J.T. and Malliaras, G.G., Anal. Bioanal. Chem., 2006, vol. 384, p. 343.

    Article  CAS  Google Scholar 

  5. Shim, Y.-B. and Park, J.-H., J. Electrochem. Soc., 2000, vol. 147, p. 381.

    Article  CAS  Google Scholar 

  6. Organic Electrochemistry, Hammerich, O., Speiser, B., Eds., Boca Raton: CRC Press, 2016.

  7. Solid State Electrochemistry, Kharton, V.V., Ed., Boca Raton: Wiley-VCH, 2009, vol.1.

  8. The CRC Handbook of Solid State Electrochemistry, Gelling, P.J. and Bouwmeester, H.J.M., Eds., New York: CRC, 1997.

  9. Kuwata, N., Kawamura, J., Toribami, K., Hattori, T., and Sata, N., Electrochem. Commun., 2004, vol. 6, p. 417.

    Article  CAS  Google Scholar 

  10. Wang, X., Ma, Y., Raza, R., Muhammed, M., and Zhu, B., Electrochem. Commun., 2008, vol. 10, p. 1617.

    Article  CAS  Google Scholar 

  11. Knauth, P., Solid State Ionics, 2009, vol. 180, p. 911.

    Article  CAS  Google Scholar 

  12. Scher, H. and Montroll, E., Phys. Rev. B, 1975, vol. 12, p. 2455.

    Article  CAS  Google Scholar 

  13. Nenashev, A., Oelerich, J., and Baranovskii, S., J. Phys.: Condens. Matter, 2015, vol. 27, p. 093201.

    CAS  Google Scholar 

  14. Miller, A. and Abrahams, E., Phys. Rev., 1960, vol. 120, p. 745.

    Article  CAS  Google Scholar 

  15. Marcus, R.A., J. Chem. Phys., 1956, vol. 24, p. 966.

    Article  CAS  Google Scholar 

  16. Chandler, D., Introduction to Modern Statistical Mechanics, Oxford: Oxford University, 1987.

    Google Scholar 

  17. Bässler, H., Phys. Status Solidi B, 1993, vol. 175, p. 15.

    Article  Google Scholar 

  18. Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., de Leeuw, D.M., and Michels, M.A.J., Phys. Rev. Lett., 2005, vol. 94, p. 206601.

    Article  CAS  Google Scholar 

  19. Germs, W.C., van der Hulst, J.J.M., van Mensfoort, S.L.M., Bobbert, P.A., and Coehoorn, R., Phys. Rev. B, 2011, vol. 84, p. 165210.

    Article  Google Scholar 

  20. Charge Transport in Disordered Solids with Applications in Electronics, Baranovski, S., Ed., Chichester: Wiley, 2006.

  21. Rudenko, A.I. and Arkhipov, V.I., Philos. Mag. B, 1982, vol. 45, p. 209.

    Article  CAS  Google Scholar 

  22. Borsenberger, P.M., Magin, E.H., van der Auweraer, M., and de Schyver, F.C., Phys. Status Solidi A, 1993, vol. 140, p. 9.

    Article  CAS  Google Scholar 

  23. Schein, L.B. and Tyutnev, A.P., J. Phys. Chem. C, 2008, vol. 112, p. 7295.

    Article  CAS  Google Scholar 

  24. Deem, M. and Chandler, D., J. Stat. Phys., 1994, vol. 76, p. 911.

    Article  Google Scholar 

  25. Novikov, S.V. and Vannikov, A.V., J. Phys. Chem., 1995, vol. 99, p. 14573.

    Article  CAS  Google Scholar 

  26. Novikov, S.V., Dunlap, D.H., and Kenkre, V.M., Proc. SPIE, 1998, vol. 3471, p. 181.

    Article  CAS  Google Scholar 

  27. Novikov, S.V. and Vannikov, A.V., Mol. Cryst. Liq. Cryst., 2001, vol. 361, p. 89.

    Article  CAS  Google Scholar 

  28. Novikov, S.V., J. Chem. Phys., 2015, vol. 143, p. 164510.

    Article  CAS  Google Scholar 

  29. Novikov, S.V. and van der Auweraer, M., Phys. Rev. E, 2009, vol. 79, p. 041139.

    Article  CAS  Google Scholar 

  30. Dunlap, D.H., Parris, P.E., and Kenkre, V.M., Phys. Rev. Lett., 1996, vol. 77, p. 542.

    Article  CAS  Google Scholar 

  31. Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., and Vannikov, A.V., Phys. Rev. Lett., 1998, vol. 81, p. 4472.

    Article  CAS  Google Scholar 

  32. Novikov, S.V. and Tyutnev, A.P., J. Chem. Phys., 2013, vol. 138, p. 104120.

    Article  CAS  Google Scholar 

  33. Novikov, S.V., Ann. Phys. (Berlin, Ger.), 2009, vol. 18, p. 954.

    Article  CAS  Google Scholar 

  34. Borsenberger, P., Gruenbaum, W., and Magin, E., Physica B, 1996, vol. 228, p. 226.

    Article  CAS  Google Scholar 

  35. Borsenberger, P.M., Gruenbaum, W.T., and Magin, E.H., Phys. Status Solidi B, 1995, vol. 190, p. 555.

    Article  CAS  Google Scholar 

  36. Sinicropi, J., Cowdery-Corvan, J., Magin, E., and Borsenberger, P., Chem. Phys., 1997, vol. 218, p. 331.

    Article  CAS  Google Scholar 

  37. Heun, S. and Borsenberger, P.M., Chem. Phys., 1995, vol. 200, p. 245.

    Article  CAS  Google Scholar 

  38. Novikov, S.V., Polym. Sci., Ser. B, 2003, vol. 41, p. 2584.

    Article  CAS  Google Scholar 

  39. Parris, P.E., Dunlap, D.H., and Kenkre, V.M., Polym. Sci., Ser. B, 1997, vol. 35, p. 2803.

    Article  CAS  Google Scholar 

  40. Novikov, S.V., Ann. Phys. (Berlin, Ger.), 2009, vol. 18, p. 949.

    Article  CAS  Google Scholar 

  41. Novikov, S.V. and Vannikov, A.V., J. Phys. Chem. C, 2009, vol. 113, p. 2532.

    Article  CAS  Google Scholar 

  42. Dieckmann, A., Bäassler, H., and Borsenberger, P.M., J. Chem. Phys., 1993, vol. 99, p. 8136.

    Article  CAS  Google Scholar 

  43. Novikov, S.V. and Vannikov, A.V., J. Exp. Theor. Phys., 1994, vol. 79, p. 482.

    Google Scholar 

  44. Madigan, C. and Bulovic, V., Phys. Rev. Lett., 2006, vol. 97, p. 216402.

    Article  Google Scholar 

  45. Devroye, L., Non-Uniform Random Variate Generation, Berlin: Springer, 1986.

    Book  Google Scholar 

  46. Parris, P.E., Kus, M., Dunlap, D.H., and Kenkre, V.M., Phys. Rev. E, 1997, vol. 56, p. 5295.

    Article  CAS  Google Scholar 

  47. May, F., Baumeier, C., Lennartz, C., and Andrienko, D., Phys. Rev. Lett., 2012, vol. 109, p. 136401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Novikov.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 3, pp. 311–320.

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, S.V. Hopping charge transport in amorphous organic and inorganic materials with spatially correlated random energy landscape. Russ J Electrochem 53, 275–283 (2017). https://doi.org/10.1134/S1023193517030132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517030132

Keywords

Navigation