Skip to main content
Log in

Electrolyte systems for primary lithium-fluorocarbon power sources and their working efficiency in a wide temperature range

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

New compositions of liquid organic electrolytes with working temperatures of up to–50°С were developed for low-temperature primary Li/CF x power sources. Five different compositions of organic electrolytes with a 15-crown-5 (2 vol %) addition and without it were studied on laboratory Li/CF x power sources. 1МLiBF4 (LiPF6) in an ethylene carbonate/dimethyl carbonate/methyl propionate/ethylmethyl carbonate (EC/DMC/MP/EMC) (1: 1: 1: 2) mixture and 1 М LiPF6 in an EC/DMC/EMC (1: 1: 3) mixture each with a 15-crown-5 (2 vol %) addition were found to be the best compositions of organic electrolytes with working temperatures of up to–50°С. The electrochemical tests at 20 and–50°С in the Li/CF x system showed that the 15-crown-5 addition increased the length of the discharge plateau at–50°С three- or fourfold. The mechanisms responsible for the increase in the discharge capacity of the CF x cathode in the presence of a crown ether addition were suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dey, A.N. and Sallivan, B.P., J. Electrochem. Soc., 1970, vol. 117, p. 222.

    Article  CAS  Google Scholar 

  2. Foos, J. S. and Stolki, T. J., J. Electrochem. Soc., 1988, vol. 135, p. 2769.

    Article  CAS  Google Scholar 

  3. Geronov, Y., Puresheva, B., Moshtev, R.V., Zlatilova, P., Kosev, T., Staynov, Z., Pistoia, G., and Pasquali, M., J. Electrochem. Soc., 1990, vol. 137, p. 3338.

    Article  CAS  Google Scholar 

  4. Dampier, F.W., J. Electrochem. Soc., 1981, vol. 128, p. 2501.

    Article  CAS  Google Scholar 

  5. Abraham, K.M., Pasquariello, D.M., and Martin, F.J., J. Electrochem. Soc., 1986, vol. 133, p. 661.

    Article  CAS  Google Scholar 

  6. Xu, K., Chem. Rev., 2014, vol. 114, p. 11503.

    Article  CAS  Google Scholar 

  7. Linden, D. and Reddy, T.B., Handbook of Batteries, New York: McGraw-Hill, 2002.

    Google Scholar 

  8. Smart, M.C., Ratnakumar, B.V., Surampudi, S., Wang, Y., Zhang, X., Greenbaum, S.G., Hightower, A., Ahn, C.C., and Fultz, B., J. Electrochem. Soc., 1999, vol. 146, p. 3963.

    Article  CAS  Google Scholar 

  9. Smart, M.C., Ratnakumar, B.V., and Surampudi, S., J. Electrochem. Soc., 1999, vol. 146, p. 486.

    Article  CAS  Google Scholar 

  10. Ohta, A.H., Koshina, H., Okuno, H., and Murai, H., J. Power Sources, 1995, vol. 54, p. 6.

    Article  CAS  Google Scholar 

  11. Aurbauch, D. and Granot, E., Electrochim. Acta, 1997, vols. 42–44, p. 697.

    Article  Google Scholar 

  12. Salomon, M. and Hefter, J.T., Pure Appl. Chem., 1993, vol. 65, p. 1533.

    Article  CAS  Google Scholar 

  13. D’Aprano, A., Salomon, M., and Mauro, V., J. Solution Chem., 1995, vol. 24, p. 685.

    Article  Google Scholar 

  14. Yarmolenko, O.V. and Tulibaeva, G.Z., Al’tern. Energ. Ekol., 2013, nos. 01–1(117), p. 60.

    Google Scholar 

  15. Yarmolenko, O.V. and Efimov, O. N., Russ. J. Electrochem., 2005, vol. 41, p. 568.

    Article  CAS  Google Scholar 

  16. Yarmolenko, O.V., Tulibaeva, G.Z., Khatmullina, K.G., Bogdanova, L.M., and Shestakov, A.F., Mendeleev Commun., 2016, vol. 26, p. 407.

    Article  CAS  Google Scholar 

  17. Kawamura, T., Okada, S., and Yamaki, J.-I., J. Power Sources, 2006, vol. 156, p. 547.

    Article  CAS  Google Scholar 

  18. Yarmolenko, O.V., Tulibaeva, G.Z., Petrova, G.N., Shuvalova, N.I., and Efimov, O.N., Materialy dokladov 9-ogo mezhdunarodnogo soveshchaniya “Fundamental’nye problemy ioniki tverdogo tela” (Papers from the 9th Int. Conf. Fundamental Problems of Solid State Ionics), Chernogolovka, Granitsa, 2008, p. 204.

    Google Scholar 

  19. Fateev, S.A., Nikol’skaya, N.F., and Polyakova, N.V., Abstracts of Papers, Rossiiskaya konf. “Fizikokhimicheskie problemy vozobnovlyaemoi energetiki” (Russian Conf. “Physicochemical Problems of Renewable Energy”), St. Petersburg: Polytechnical Univ., 2013, p. 118.

    Google Scholar 

  20. Perdew, P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  Google Scholar 

  21. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

  22. Yazami, R., Patent WO2008105916A2, 2007.

    Google Scholar 

  23. Whitacre, J.F., West, W.C., Smart, M.C., Yazami, R., Prakash, G.K.S., Hamwi, A., and Ratnakumar, B.V., Electrochem. Solid-State Lett., 2007, vol. 10, p. A166.

    Article  CAS  Google Scholar 

  24. Nagasubramanian, G. and Sanchez, B., J. Power Sources, 2007, vol. 165, p. 630.

    Article  CAS  Google Scholar 

  25. Valerga, A.J., Badachhape, R.B., Parks, G.D., Kamarchick, P., Wood, J.L., and Margrave, J.L., U.S. Army Electronics Command, R&D Technical Report, ECOM-0056-F, 1974.

    Google Scholar 

  26. Whittingham, M.S., J. Electrochem. Soc., 1975, vol. 122, p. 526.

    Article  CAS  Google Scholar 

  27. Watanabe, N., Solid State Ionics, 1980, vol. 1, p. 87.

    Article  CAS  Google Scholar 

  28. Touhara, H., Fujimoto, H., Watanabe, N., and Tressaud, A., Solid State Ionics, 1984, vol. 14, p. 163.

    Article  CAS  Google Scholar 

  29. Touhara, H., Fujimoto, H., Kadono, K., Watanabe, N., and Endo, M., Electrochim. Acta, 1987, vol. 32, p. 293.

    Article  CAS  Google Scholar 

  30. Zhang, S.S., Foster, D., Wolfenstine, J., and Read, J., J. Power Sources, 2009, vol. 187, p. 233.

    Article  CAS  Google Scholar 

  31. Watanabe, N., Hagiwara, R., Nakajima, T., Touhara, H., and Ueno, K., Electrochim. Acta, 1982, vol. 27, p. 1615.

    Article  CAS  Google Scholar 

  32. Giraudet, J., Delabarre, C., Guerin, K., Dubois, M., Masin, F., and Hamwi, A., J. Power Sources, 2006, vol. 158, p. 1365.

    Article  CAS  Google Scholar 

  33. Abraham, K.M. and Pasquariello, D.M., The Electrochem. Soc. Proceedings, Abraham, K.M. and Salomon, M., Eds., 1991, PV91-3.

  34. Tulibaeva, G.Z., Yarmolenko, O.V., and Shestakov, A.F., Russ. Chem. Bull. (Int. Ed.), 2009, vol. 58, p. 1589.

    Article  CAS  Google Scholar 

  35. Yarmolenko, O V., Khatmullina, K.G., Tulibaeva, G.Z., Bogdanova, L.M., and Shestakov, A.F., Russ. Chem. Bull., 2012, vol. 61, p. 539.

    Article  CAS  Google Scholar 

  36. Ignatova, A.A., Yarmolenko, O.V., Tulibaeva, G.Z., Shestakov, A.F., and Fateev, S.A., J. Power Sources, 2016, vol. 309, p. 116.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ignatova.

Additional information

Original Russian Text © A.A. Ignatova, G.Z. Tulibaeva, O.V. Yarmolenko, S.A. Fateev, 2017, published in Elektrokhimiya, 2017, Vol. 53, No. 3, pp. 330–339.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatova, A.A., Tulibaeva, G.Z., Yarmolenko, O.V. et al. Electrolyte systems for primary lithium-fluorocarbon power sources and their working efficiency in a wide temperature range. Russ J Electrochem 53, 292–301 (2017). https://doi.org/10.1134/S1023193517030077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517030077

Keywords

Navigation