Skip to main content
Log in

Effects of peak current density on the structure and property of PbO2–CeO2 nanocomposite electrodes prepared by pulse electrodeposition

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

PbO2–CeO2 nanocomposite electrodes were prepared by pulse electrodeposition method in the lead nitrate solution containing CeO2 nanoparticles with different peak current density. The content of CeO2 nanoparticles in the electrodes increase with the increase of peak current density. The effects of peak current density on the morphology and structure of PbO2–CeO2 nanocomposite electrodes were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM and XRD results show that the increase of peak current density can make the morphology finer and more compact, and the crystal size decreases with the increase of peak current density. The oxygen evolution overpotential and stability of PbO2–CeO2 nanocomposite electrodes enhance with the increase of peak current density. The electrocatalytic property of PbO2–CeO2 nanocomposite electrodes was examined for the electrochemical oxidation of rhodamine B (RhB). The results show that the RhB removal efficiency on PbO2–CeO2 nanocomposite electrodes increase with the increase of peak current density, which can be attributed to the higher oxygen evolution overpotential and CeO2 content in the composite electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Egan, D.R.P., Low, C.T.J., and Walsh, F.C., J. Power Sources, 2011, vol. 196, p. 5725.

    Article  CAS  Google Scholar 

  2. Shmychkova, O., Luk’yanenko, T., Velichenko, A., Meda, L., and Amadelli, R., Electrochim. Acta, 2013, vol. 111, p. 332.

    Article  CAS  Google Scholar 

  3. Moncada, A., Mistretta, M.C., Randazzo, S., Piazza, S., Sunseri, C., and Inguanta, R., J. Power Sources, 2014, vol. 256, p. 72.

    Article  CAS  Google Scholar 

  4. Ghasemi, S., Mousavi, M.F., Karami, H., Shamsipur, M., and Kazemi, S.H., Electrochim. Acta, 2006, vol. 52, p. 1596.

    Article  CAS  Google Scholar 

  5. Amadelli, R., Samiolo, L., De Battisti, A., and Velichenko, A.B., J. Electrochem. Soc., 2011, vol. 158, p. P87.

    Article  CAS  Google Scholar 

  6. Lubenov, L., Bojinov, M., and Tzvetkoff, T., J. Solid State Electrochem., 2007, vol. 11, p. 1613.

    Article  CAS  Google Scholar 

  7. Abaci, S., Tamer, U., Pekmez, K., and Yildiz, A., Electrochim. Acta, 2005, vol. 50, p. 3655.

    Article  CAS  Google Scholar 

  8. Cerro-Lopez, M., Meas-Vong, Y., Méndez-Rojas, M.A., Martínez-Huitle, C.A., and Quiroz, M.A., Appl. Catal. B: Environ., 2014, vol. 144, p. 174.

    Article  CAS  Google Scholar 

  9. Weiss, E., Groenen-Serrano, K., and Savall, A., J. Appl. Electrochem., 2008, vol. 38, p. 329.

    Article  CAS  Google Scholar 

  10. Hmani, E., Samet, Y., and Abdelhédi, R., Diam. Relat. Mater., 2012, vol. 30, p. 1.

    Article  CAS  Google Scholar 

  11. Aquino, J.M., Pereira, G.F., Rocha-Filho, R.C., Bocchi, N., and Biaggio, S.R., J. Hazard Mater., 2011, vol. 192, p. 1275.

    Article  CAS  Google Scholar 

  12. Panizza, M. and Martinez-Huitle, C.A., Chemosphere, 2013, vol. 90, p. 1455.

    Article  CAS  Google Scholar 

  13. Devilliers, D. and Mahé, E., Electrochim. Acta, 2010, vol. 55, p. 8207.

    Article  CAS  Google Scholar 

  14. Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., Velichenko, Y.A., and Devilliers, D., Mater. Chem. Phys., 2012, vol. 131, p. 686.

    Article  CAS  Google Scholar 

  15. Yao, Y.W., Zhao, C.M., and Zhu, J., Electrochim. Acta, 2012, vol. 69, p. 146.

    Article  CAS  Google Scholar 

  16. Musiani, M., Furlanetto, F., and Bertoncello, R., J. Electroanal. Chem., 1999, vol. 465, p. 160.

    Article  CAS  Google Scholar 

  17. Musiani, M. and Guerriero, P., Electrochim. Acta, 1998, vol. 44, p. 1499.

    Article  CAS  Google Scholar 

  18. Dan, Y.Y., Lu, H.Y., Liu, X.L., Lin, H.B., and Zhao, J.Z., Int. J. Hydrogen Energy, 2011, vol. 36, p. 1949.

    Article  CAS  Google Scholar 

  19. Amadelli, R., Samiolo, L., Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., and Danilov, F.I., Electrochim. Acta, 2009, vol. 54, p. 5239.

    Article  CAS  Google Scholar 

  20. Yao, Y.W., Li, Y., Cui, L.H., Yu, N.C., and Dong, H.S., J. Electrochem. Soc., 2015, vol. 162, p. E7.

    Article  CAS  Google Scholar 

  21. Velichenko, A.B., Amadelli, R., Knysh, V.A., Luk’yanenko, T.V., and Danilov, F.I., J. Electroanal. Chem., 2009, vol. 632, p. 192.

    Article  CAS  Google Scholar 

  22. Liu, Y., Liu, H.L., Ma, J., and Li, J.J., J. Hazard Mater., 2012, vol. 213–214, p. 222.

    Article  Google Scholar 

  23. Yao, Y.W., Jiao, L.M., Cui, L.H., Yu, N.C., Wei, F., and Lu, Z. M., J. Electrochem. Soc., 2015, vol. 162, p. H693.

    Article  CAS  Google Scholar 

  24. Mirali, S.M., Jafarzadeh, K., and Mirjani, M., Trans. Inst. Met. Finish, 2015, vol. 93, p. 24.

    Article  CAS  Google Scholar 

  25. Yu, N.F. and Gao, L.J., Electrochem. Commun., 2009, vol. 11, p. 220.

    Article  CAS  Google Scholar 

  26. Vatistas, N. and Cristofaro, S., Electrochem. Commun., 2000, vol. 2, p. 334.

    Article  CAS  Google Scholar 

  27. Tan, C., Xiang, B., Li, Y.J., Fang, J.W., and Huang, M., Chem. Eng. J., 2011, vol. 166, p. 15.

    Article  CAS  Google Scholar 

  28. Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., Devilliers, D., and Danilov, F.I., Russ. J. Electrochem., 2008, vol. 44, p. 1251.

    Article  CAS  Google Scholar 

  29. Yao, Y.W., Yao, S.W., Zhang, L., and Wang, H.Z., Mater. Lett., 2007, vol. 61, p. 67.

    Article  CAS  Google Scholar 

  30. Li, Y.D., Jiang, H., Huang, W.H., and Tian, H., Appl. Surf. Sci., 2008, vol. 254, p. 6865.

    Article  CAS  Google Scholar 

  31. Song, Y.H., Wei, G., and Xiong, R.C., Electrochim. Acta, 2007, vol. 52, p. 7022.

    Article  CAS  Google Scholar 

  32. Shmychkova, O., Luk’yanenko, T., Amadelli R., and Velichenko A., J. Electroanal. Chem., 2014, vol. 717–718, p. 196.

    Article  Google Scholar 

  33. Shmychkova, O., Luk’yanenko, T., Amadelli, R., and Velichenko, A., J. Electroanal. Chem., 2013, vol. 706, p. 86.

    Article  CAS  Google Scholar 

  34. Jao, J.W., Ju, N.C., Ziao, L.M., and Zhao, C.M., Russ. J. Electrochem., 2016, vol. 52, p. 163.

    Article  Google Scholar 

  35. Cao, J.L., Zhao, H.Y., Cao, F.H., and Zhang, J.Q., Electrochim. Acta, 2007, vol. 52, p. 7870.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwu Yao.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 4, pp. 466–472.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Dong, H., Yu, N. et al. Effects of peak current density on the structure and property of PbO2–CeO2 nanocomposite electrodes prepared by pulse electrodeposition. Russ J Electrochem 53, 411–416 (2017). https://doi.org/10.1134/S1023193517020148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517020148

Keywords

Navigation