Skip to main content
Log in

Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The application of gold nanoparticles (AuNPs) modified glassy carbon electrode in the electrochemical detection of arsenic is presented. AuNPs were electrodeposited onto the surface of a glassy carbon electrode (GCE) by cyclic voltammetry in a potential range of–400 to 1100 mV for 10 cycles. The modification of the GCE with AuNPs resulted in increased redox current of [Fe(CN)6]3–/4– when compared to that obtained from bare GCE. As(III) detection was carried out using square wave anodic stripping voltammetry (SWASV) at the following optimised conditions: pH 1, deposition potential of–600 mV and pre-concentration time of 60 s. The GCE–AuNPs electrode detected As(III) to the limit of 0.28 ppb and was not susceptible to many interfering cations except Cd, Cu and Hg. The GCE–AuNPs electrode was used for the quantitative analysis of arsenic in real water sample. The results obtained were in good correlation with those obtained from inductively coupled plasma—optical emission spectroscopy technique, thus validating the reported method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. and Wei, W., Jointly modified single-walled carbon nanotubes on low resistance monolayer modified electrode for arsenic(III) detection, J. Electroanal. Chem., 2008, vol. 624, pp. 299–304.

    Article  CAS  Google Scholar 

  2. Huang, J.-F. and Chen, H.-H., Gold-nanoparticleembedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III), 2013, Talanta, vol. 116, pp. 852–859.

  3. Theytaz, J., Braschler, T., van Lintel, H., Renaud, P., Diesel, E., Merulla, D., and van der Meer, J., Biochip with E. coli bacteria for detection of arsenic in drinking water, Procedia Chem., 2009, vol. 1, pp. 1003–1006.

    Article  CAS  Google Scholar 

  4. Karim, M.M., Arsenic in groundwater and health problems in Bangladesh, Water Resour., 2000, vol. 34, pp. 304–310.

    CAS  Google Scholar 

  5. Domínguez-González, R., González Varela, L., and Bermejo-Barrera, P., Functionalized gold nanoparticles for the detection of arsenic in water, Talanta, 2014, vol. 118, pp. 262–269.

    Article  Google Scholar 

  6. Liu, Z.-G., Chen, X., Liu, J.-H., and Huang, X.-J., Robust electrochemical analysis of As(III) integrating with interference tests: A case study in groundwater, J. Hazard. Mater., 2014, vol. 278, pp. 66–74.

    Article  CAS  Google Scholar 

  7. Dai, B., Cao, M., Fang, G., Liu, B., Dong, X., Pan, M., and Wang, S., Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP–MS, Hazard. Mater., 2012, vol. 219–220, pp. 103–110.

    Google Scholar 

  8. Anezaki, K., Nukatsuka, I., and Ohzeki, K., Determination of arsenic(III) and total arsenic(III,V) in water samples by resin suspension graphite furnace atomic absorption spectrometry, Anal. Sci., 1999, vol. 15, pp. 829–834.

    Article  CAS  Google Scholar 

  9. Forzani, E.S., Foley, K., Westerhoff, P., and Tao, N., Detection of arsenic in groundwater using a surface plasmon resonance sensor, Sens. Actuators B: Chem., 2007, vol. 123, pp. 82–88.

    Article  CAS  Google Scholar 

  10. Komorowicz, I. and Barałkiewicz, D., Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—Last decade review, Talanta, 2011, vol. 84, no. 2, pp. 247–261.

    Article  CAS  Google Scholar 

  11. Wang, S., Wang, Y., Zhou, L., Li, J., Wang, S., and Liu, H., Fabrication of an effective electrochemical platform based on graphene and AuNPs for high sensitive detection of trace Cu2+, Electrochim. Acta, 2014, vol. 132, pp. 7–14.

    Article  CAS  Google Scholar 

  12. Achary, G., Kumaraswamy, M.N., Viswanatha, R., and Arthoba Nayaka, Y., An organically modified exfoliated graphite electrode for the voltammetric determination of lead ions in contaminated water samples, Russ. J. Electrochem., 2015, vol. 51, pp. 679–685.

    Article  CAS  Google Scholar 

  13. Ndlovu, T., Arotiba, O.A., Sampath, S., Krause, R.W., and Mamba, B.B., Electrochemical detection and removal of lead in water using poly(propylene imine) modified re-compressed exfoliated graphite electrodes, J. Appl. Electrochem., 2011, vol. 41, pp. 1389–1396.

    Article  CAS  Google Scholar 

  14. Cheraghi, S., Taher, M.A., and Fazelirad, H., Voltammetric determination of silver with a new multi-walled carbon nanotube modified paste electrode, Russ. J. Electrochem., 2015, vol. 51, pp. 271–277.

    Article  CAS  Google Scholar 

  15. Idris, A.O., Mabuba, N., and Arotiba, O.A., Electroanalysis of selenium in water on an electrodeposited gold-nanoparticle modified glassy carbon electrode, J. Electroanal. Chem., 2015, vol. 758, pp. 7–11.

    Article  CAS  Google Scholar 

  16. Kopanica, M. and Novotny, L., Determination of traces of arsenic(III) by anodic stripping voltammetry in solutions, natural waters and biological material, Anal. Chim. Acta, 1998, vol. 368, pp. 211–218.

    Article  CAS  Google Scholar 

  17. Hwang, G.-H., Han, W.-K., Hong, S.-J., Park, J.-S., and Kang, S.-G., Determination of trace amounts of lead and cadmium using a bismuth/glassy carbon composite electrode, Talanta, 2009, vol. 77, pp. 1432–1436.

    Article  CAS  Google Scholar 

  18. Ndlovu, T., Arotiba, O.A., Sampath, S., Krause, R.W., and Mamba, B.B., Electroanalysis of copper as a heavy metal pollutant in water using cobalt oxide modified exfoliated graphite electrode, Phys. Chem. Earth, Parts A/B/C, 2012, vol. 50–52, pp. 127–131.

    Article  Google Scholar 

  19. Janegitz, B.C., Marcolino-Junior, L.H., Campana-Filho, S.P., Faria, R.C., and Fatibello-Filho, O., Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan, Sens. Actuators B: Chem., 2009, vol. 142, pp. 260–266.

    Article  CAS  Google Scholar 

  20. Adeloju, S.B., Young, T.M., Jagner, D., and Batley, G.E., Constant current cathodic stripping potentiometric determination of arsenic on a mercury film electrode in the presence of copper ions, Anal. Chim. Acta, 1999, vol. 381, pp. 207–213.

    Article  CAS  Google Scholar 

  21. Wei, Z. and Somasundaran, P., Cyclic voltammetric study of arsenic reduction and oxidation in hydrochloric acid using a Pt RDE, J. Appl. Electrochem., 2004, vol. 34, pp. 241–244.

    Article  CAS  Google Scholar 

  22. Xiao, L., Wildgoose, G.G., and Compton, R.G., Sensitive electrochemical detection of arsenic(III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry, Anal. Chim. Acta, 2008, vol. 620, pp. 44–49.

    Article  CAS  Google Scholar 

  23. Wang, Z. and Ma, L., Gold nanoparticle probes, Coord. Chem. Rev., 2009, vol. 253, pp. 1607–1618.

    Article  CAS  Google Scholar 

  24. Liu, Z.-G. and Huang, X.-J., Voltammetric determination of inorganic arsenic, TrAC Trends Anal. Chem., 2014, vol. 60, pp. 25–35.

    Article  CAS  Google Scholar 

  25. Teixeira, M.C., de F. L. Tavares, E., Saczk, A.A., Okumura, L.L., das G. Cardoso, M., Magriotis, Z.M., and de Oliveira, M.F., Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode, Food Chem., 2014, vol. 154, pp. 38–43.

    Article  CAS  Google Scholar 

  26. Ting, S.L., Ee, S.J., Ananthanarayanan, A., Leong, K.C., and Chen, P., Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions, Electrochim. Acta, 2015, vol. 172, pp. 7–11.

    Article  CAS  Google Scholar 

  27. Li, D., Li, J., Jia, X., Han, Y., and Wang, E., Electrochemical determination of arsenic(III) on mercaptoethylamine modified Au electrode in neutral media, Anal. Chim. Acta, 2012, vol. 733, pp. 23–27.

    Article  CAS  Google Scholar 

  28. Benvidi, A., Firouzabadi, A.D., Moshtaghiun, S.M., Mazloum-Ardakani, M., and Tezerjani, M.D., Ultrasensitive DNA sensor based on gold nanoparticles/ reduced graphene oxide/glassy carbon electrode, Anal. Biochem., 2015, vol. 484, pp. 24–30.

    Article  CAS  Google Scholar 

  29. Lin, X., Ni, Y., and Kokot, S., Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples, Electrochim. Acta, 2014, vol. 133, pp. 484–491.

    Article  CAS  Google Scholar 

  30. Ndlovu, T., Mamba, B.B., Sampath, S., Krause, R.W., and Arotiba, O.A., Voltammetric detection of arsenic on a bismuth modified exfoliated graphite electrode, Electrochim. Acta, 2014, vol. 128, pp. 48–53.

    Article  CAS  Google Scholar 

  31. Hassan, S.S., Solangi, A.R., Kazi, T.G., Kalhoro, M.S., Junejo, Y., Tagar, Z.A., and Kalwar, N.H., Nafion stabilized ibuprofen–gold nanostructures modified screen printed electrode as arsenic(III) sensor, J. Electroanal. Chem., 2012, vol. 682, pp. 77–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Arotiba.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 2, pp. 190–197.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, A.O., Mafa, J.P., Mabuba, N. et al. Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water. Russ J Electrochem 53, 170–177 (2017). https://doi.org/10.1134/S1023193517020082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517020082

Keywords

Navigation