Skip to main content
Log in

Electrodeposition and characterization of red selenium thin film—effect of the substrate on the nucleation mechanism

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, cyclic voltammetry (CV) and chronoamperometry (CA) were used to study the electrodeposition mechanism of red selenium on platinum and (ITO) substrates from aqueous solution containing (SeO2) and sodium citrate as support electrolyte with pH 4.3 at ambient temperature. The potentiostatic current transients were analyzed according to Scharifker–Hills model. The morphological characterization of the deposit was carried out by Scanning Electron Microscopy (SEM), whereas the optical one was realized by UV-Visible spectroscopy. The results shown that the nucleation mechanism of Se on each substrate is instantaneous with a three-dimensional growth of the hemispherical nuclei. The nucleation density (N 0) is exponentially increased with the applied overpotential. Se thin film has an energy gap of about 2.4 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Randey, R.K., Sahu, S.N., and Chandra, S., Handbook of Semiconductor Electrodeposition, N.-Y.: Marcel Dekker Inc., 1996.

    Google Scholar 

  2. Johnson, J.A., Saboungi, M.L., Thiyagarajan, P., Scencsits, R., and Meisel, D., J. Phys. Chem. B, 1999, vol. 103, p. 59.

    Article  CAS  Google Scholar 

  3. Gates, B., Mayers, B., Cattle, B., and Xia, Y.N., Adv. Funct. Mater., 2002, vol. 12, p. 219.

    Article  CAS  Google Scholar 

  4. Tan, S.H. and Kounaves, S.P., Electroanalysis, 1998, vol. 10, p. 364.

    Article  CAS  Google Scholar 

  5. Ferri, T. and Sangiorgio, P., Anal. Acta, 1999, vol. 385, p. 377.

    Article  Google Scholar 

  6. Badr, Y. and Mahmoud, M.A., Physica B, 2005, vol. 369, p. 278.

    Article  CAS  Google Scholar 

  7. Remigiusz Kowalik and Krzysztof Fitzner, J. Electroanal. Chem., 2009, vol. 633, p. 78.

    Article  CAS  Google Scholar 

  8. Zein El Abedin, S., Saad, A.Y., Farag, H.K., Borisenko, N., Liu, Q.X., and Endres, F., Electrochim. Acta, 2007, vol. 52, p. 2746.

    Article  CAS  Google Scholar 

  9. Yanqing Lai, Fandyang Liu, Jie Li, Zhian Zhang, and Yexiang Liu, J. Electroanal. Chem., 2010, vol. 639, p. 187.

    Article  CAS  Google Scholar 

  10. Kargar Razi, M., Maamoury, R.S., and Banihashemi, S., Int. J. Nano. Dim., 2011, vol. 1, p. 261.

    Google Scholar 

  11. Gurin, V.S., Prokopenko, V.B., Alexeenko, A.A., Wang, Sh., and Prokoshin, P.V., J. Mater. Sci. Eng. C, 2001, vol. 15, p. 93.

    Article  Google Scholar 

  12. Haiqing Jiang, Xi Yao, Jun Che, Minqiang Wang, and Fantao Kong, J. Ceram. Int., 2004, vol. 30, p. 1685.

    Article  CAS  Google Scholar 

  13. Wandong Zhang, Yamin Chai, Nana Cao, and Yonglan Wang, J. Mater. Lett., 2014, vol. 134, p. 123.

    Article  CAS  Google Scholar 

  14. Yuan-tao Chen, Wei Zhang, Yan-qing Fan, Xiao-qing Xu, and Zhong-xin Zhang, J. Mater. Chem. Phys., 2006, vol. 98, p. 191.

    Article  CAS  Google Scholar 

  15. Zhenghua Wang, Xiangying Chen, Jianwei Liu, Xiaogang Yang, and Yitai Qian, J. Inorg. Chem. Commun., 2003, vol. 6, p. 1329.

    Article  CAS  Google Scholar 

  16. Martínes-Escobar, D., Ramachandran Manoj, Sánchez-Juárez, A., Naroo Rios, and Jorge Sergio, J. Thin. Solid Films, 2013, vol. 535, p. 390.

    Article  Google Scholar 

  17. Ubale, A.U. and Sakhare, Y.S., J. Vacuum, 2014, vol. 99, p. 124.

    Article  CAS  Google Scholar 

  18. Xuchuan Jiang, Brian Mayers, Yuliang Wang, Bryan Cattle, and Younan Xia, J. Chem. Phys. Lett., 2004, vol. 385, p. 472.

    Article  Google Scholar 

  19. Sheng-Yi Zhang, Juan Zhang, Yi Liu, Xiang Ma, and Hong-Yuan Chen, Electrochim. Acta, 2005, vol. 50, p. 4365.

    Article  Google Scholar 

  20. Josef Pola, Zdenek Bastl, Jan Subrt, and Akihiko Ouchi, J. Appl. Surf. Sci., 2001, vol. 172, p. 220.

    Article  Google Scholar 

  21. Mendoza, D., Lbpez, S., Granandos, S., Morales, F., and Escudero, R., J. Synth. Metals, 1997, vol. 89, p. 71.

    Article  CAS  Google Scholar 

  22. Abdel Aal, A., Voigts, F., Chakarov, D., and Endres, F., Electrochim. Acta, 2012, vol. 59, p. 228.

    Article  CAS  Google Scholar 

  23. Bartosz Maranowski, Marcin Strawski, Wojciech Ososwiecki, and Marek Szklarczyk, J. Electroanal. Chem., 2015, vol. 752, p. 54.

    Article  Google Scholar 

  24. Cabral Murilo, F., Suffredini Hugo, B., Pedrosa Valber, A., Tanimotoa Sonia, T., and Machado Sergio, A.S., J. Appl. Surf. Sci., 2008, p. 5612.

    Google Scholar 

  25. Steichen, M. and Dale, Ph., J. Electrochem. Commun., 2011, vol. 13, p. 865.

    Article  CAS  Google Scholar 

  26. Sheng-Yi Zhang, Juan Zhang, Yi Liu, Xiang Ma, and Hong-Yan Chem, Electrochim. Acta, 2005, vol. 50, p. 4365.

    Article  Google Scholar 

  27. Cattarin, S., Furlanetto, F., and Musiani, M.M., J. Electroanal. Chem., 1996, vol. 415, p. 123.

    Article  Google Scholar 

  28. Scharifker, B. and Hills, G., Electrochim. Acta, 1983, vol. 28, p. 879.

    Article  CAS  Google Scholar 

  29. Gunawardena, G., Hills, G., Montenegro, T., and Scharifker, B., J. Electroanal. Chem., 1982, vol. 138, p. 225.

    Article  CAS  Google Scholar 

  30. Santos Mauro, C. and Machado Sergio, A.S., J. Electroanal. Chem., 2004, vol. 567, p. 203.

    Article  Google Scholar 

  31. Cavallini, M., Aloisi, G., and Guidelli, R., Langmuir, 1999, vol. 15, p. 2993.

    Article  CAS  Google Scholar 

  32. Senthikumar, M., Mathiyarasu, J., Joseph James, Phani, K.L.N., and Yegnaraman, V., Mater. Chem. Phys., 2003, vol. 108, p. 403.

    Article  Google Scholar 

  33. Cerisier, M., Attenborough, K., Celis, J.P., and Van Haesendonck, C., Appl. Surf. Sci., 2000, vol. 166, p. 154.

    Article  CAS  Google Scholar 

  34. Gomez, E., Pollina, R., and Vallés, E., J. Electroanal. Chem., 1997, vol. 397, p. 111.

    Article  Google Scholar 

  35. Sauthampton Electrochemistry Group, in Instrumental Methods in Electrochemistry, Kemp, T.J., Ed., Ellis UK, Horwood Ltd., Chichester, 1985.

  36. Grujicic, D. and Pesie, B., Electrochim. Acta, 2004, vol. 29, p. 4719.

    Article  Google Scholar 

  37. Floate, S., Hyde, M., and Compton, R.G., J. Electroanal. Chem., 2002, vol. 523, p. 49.

    Article  CAS  Google Scholar 

  38. Budevski, E., Staikov, G., and Lorenz, W.J., Electrochemical Phase Formation and Growth, Weinheim: VCH, 1996.

    Book  Google Scholar 

  39. Volmer, M., Kinetics of Phase Formation, Dresde: Steinkopff, 1939.

    Google Scholar 

  40. Hagfeldt, A. and Grätzel, M., Chem. Rev., 1995, vol. 95, p. 49.

    Article  CAS  Google Scholar 

  41. Gonzalez-Hernandez, J., Gorley, P.M., Holrley, P.P., Vartsabyuk, O.M., and Vorobiev, Yu.V., Thin Solid Films, 2002, vol. 403–404, p. 471.

    Article  Google Scholar 

  42. Yamaguchi, T., Yamamoto, Y., Tanaka, T., Tanashi, N., and Yoshida, A., Sol. En. Mate. Sol. Cells, 1998, vol. 50, p. 1.

    Article  CAS  Google Scholar 

  43. Huang, C.J., Meen, T.H., Lai, M.Y., and Chen, W.R., Sol. En. Mater. Sol. Cells, 2004, vol. 82, p. 553.

    CAS  Google Scholar 

  44. Sadigov, M.SW., Ozkan, M., Bacaksiz, E., Altunbas, M., Kopya, A.I., J. Mater. Sci., 1999, vol. 34, p. 4579.

    Article  CAS  Google Scholar 

  45. Singh, R.P., Singh, S.L., and Chandra, S., J. Phys. D: Appl. Phys., 1986, vol. 19, p. 1299.

    Article  CAS  Google Scholar 

  46. Pejova, B. and Grozdanov, I., Appl. Surf. Sci., 2001, vol. 1777, p. 152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oualid Dilmi.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 2, pp. 157–164.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilmi, O., Benaicha, M. Electrodeposition and characterization of red selenium thin film—effect of the substrate on the nucleation mechanism. Russ J Electrochem 53, 140–146 (2017). https://doi.org/10.1134/S1023193517020045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517020045

Keywords

Navigation