Skip to main content
Log in

Potentially implantable biocathode with the function of charge accumulation based on nanocomposite of polyaniline/carbon nanotubes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A potentially implantable biocathode with the function of charge accumulation based on a nanobiocomposite including multiwall carbon nanotubes, polyaniline, and bilirubin oxidase is developed. The regularities of the functioning of the obtained electrode are studied in air–saturated phosphate buffer solution, pH 7.4 (PB), and also in phosphate buffer solution containing redox–active blood components (BMB). The open circuit potential of the biocathode is 0.33 and 0.08 V vs. the saturated calomel electrode in PB and BMB, respectively; it is completely restored after at least three self-charge/discharge cycles with connection to resistors with different resistance. Bioelectrocatalytic current density of oxygen reduction is 0.50 and 0.42 mA cm–2 with the residual activity of 78 and 60% of the initial value after 12 h of continuous operation in PB at 25°C and in BMB at 37°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cinquin, P., Gondran, C., Giroud, F., Mazabrard, S., Pellissier, A., Boucher, F., Alcaraz, J.P., Gorgy, K., Lenouvel, F., Mathe, S., Porcu, P., and Cosnier, S., PLoS One, 2010, vol. 5, p. e10476.

    Article  Google Scholar 

  2. Shleev, S., Bergel, A., and Gorton, L., Bioelectrochemistry, 2015, no. 106, p. 1.

    Article  CAS  Google Scholar 

  3. Pankratov, D., Blum, Z., and Shleev, S., ChemElectro-Chem., 2014, no. 1, p. 1798.

    Article  CAS  Google Scholar 

  4. Pankratov, D., Blum, Z., Suyatin, D.B., Popov, V.O., and Shleev, S., ChemElectroChem., 2014, no. 1, p. 343.

    Article  Google Scholar 

  5. Pankratov, D., Falkman, P., Blum, Z., and Shleev, S., Energy Environ. Sci., 2014, no. 7, p. 989.

    Article  CAS  Google Scholar 

  6. Agnes, C., Holzinger, M., Le Goff, A., Reuillard, B., Elouarzaki, K., Tingry, S., and Cosnier, S., Energy Environ. Sci., 2014, no. 7, p. 1884.

    Article  CAS  Google Scholar 

  7. Falk, M., Villarrubia, C.W.N., Babanova, S., Atanassov, P., and Shleev, S., ChemPhysChem., 2013, no. 14, p. 2045.

    Article  CAS  Google Scholar 

  8. Chlopek, J., Czajkowska, B., Szaraniec, B., Frackowiak, E., Szostak, K., and Beguin, F., Carbon, 2006, no. 44, p. 1106.

    Article  CAS  Google Scholar 

  9. Harrison, B.S. and Atala, A., Biomaterials, 2007, no. 28, p. 344.

    Article  CAS  Google Scholar 

  10. Minteer, S.D., Atanassov, P., Luckarift, H.R., and Johnson, G.R., Mater. Today, 2012, no. 15, p. 166.

    Article  CAS  Google Scholar 

  11. Falk, M., Pankratov, D., Blum, Z., and Shleev, S., Implantable Bioelectronics, Katz, E., Ed., Weinheim: Wiley-VCH, 2014, pp. 315–346.

  12. Meiyazhagan, A., Thangavel, S., Daniel, P.H., Pulickel, M.A., and Palanisamy, T., Mater. Chem. Phys., 2015, no. 157, p. 8.

    Article  CAS  Google Scholar 

  13. Gomathi, P., Kim, M.K., Park, J.J., Ragupathy, D., Rajendran, A., Lee, S.C., Kim, J.C., Lee, S.H., and Ghim, H.D., Sens._Actuators, B, 2011, no. 155, p. 897.

    Article  CAS  Google Scholar 

  14. Li, R.X., Guo, D.Y., Ye, J.S., and Zhang, M.N., Analyst, 2015, no. 140, p. 3746.

    Article  CAS  Google Scholar 

  15. Zhang, N., Luan, P.S., Zhou, W.Y., Zhang, Q., Cai, L., Zhang, X., Zhou, W.B., Fan, Q.X., Yang, F., Zhao, D., Wang, Y.C., and Xie, S.S., Nano Res., 2014, no. 7, p. 1680.

    Article  CAS  Google Scholar 

  16. Spinks, G.M., Mottaghitalab, V., Bahrami-Saniani, M., Whitten, P.G., and Wallace, G.G., Adv. Mater., 2006, no. 18, p. 637.

    Article  CAS  Google Scholar 

  17. Qazi, T.H., Rai, R., and Boccaccini, A.R., Biomaterials, 2014, no. 35, p. 9068.

    Article  CAS  Google Scholar 

  18. Balint, R., Cassidy, N.J., and Cartmell, S.H., Acta Biomater., 2014, no. 10, p. 2341.

    Article  CAS  Google Scholar 

  19. Xu, S. and Minteer, S.D., ACS Catal., 2014, no. 4, p. 2241.

    Article  CAS  Google Scholar 

  20. Christwardana, M. and Kwon, Y., J. Power Sources, 2015, no. 299, p. 604.

    Article  CAS  Google Scholar 

  21. Schubart, I.W., Gobel, G., and Lisdat, F., Electrochim. Acta, 2012, no. 82, p. 224.

    Article  CAS  Google Scholar 

  22. Kashyap, D., Kim, C., Kim, S.Y., Kim, Y.H., Kim, G.M., Dwivedi, P.K., Sharma, A., and Goel, S., Int. J. Hydrogen Energy, 2015, no. 40, p. 9515.

    Article  CAS  Google Scholar 

  23. Wang, X.J., Sjoberg-Eerola, P., Immonen, K., Bobacka, J., and Bergelin, M., J. Power Sources, 2011, no. 196, p. 4957.

    Article  CAS  Google Scholar 

  24. Vaz-Dominguez, C., Campuzano, S., Rudiger, O., Pita, M., Gorbacheva, M., Shleev, S., Fernandez, V.M., and De Lacey, A.L., Biosens. Bioelectron., 2008, no. 24, p. 531.

    Article  CAS  Google Scholar 

  25. Pankratov, D.V., Zeifman, Y.S., Morozova, O.V., Shumakovich, G.P., Vasil’eva, I.S., Shleev, S., Popov, V.O., and Yaropolov, A.I., Electroanalysis, 2013, no. 25, p. 1143.

    Article  CAS  Google Scholar 

  26. Andoralov, V., Falk, M., Suyatin, D.B., Granmo, M., Sotres, J., Ludwig, R., Popov, V.O., Schouenborg, J., Blum, Z., and Shleev, S., Sci. Rep., 2013, no. 3, p. 3270.

    Article  Google Scholar 

  27. Rasmussen, M., Ritzmann, R.E., Lee, I., Pollack, A.J., and Scherson, D., J. Am. Chem. Soc., 2012, no. 134, p. 1458.

    Article  CAS  Google Scholar 

  28. Lykkesfeldt, J., Cancer Epidemiol., Biomarkers Prev., 2007, no. 16, p. 2513.

    Article  CAS  Google Scholar 

  29. Wiecek, M., Maciejczyk, M., Szymura, J., and Szygula, Z., Physiol. Res., 2015, no. 64, p. 93.

    CAS  Google Scholar 

  30. Liu, Y., Su, Z.H., Zhang, Y., Chen, L., Gu, T.A., Huang, S.Y., Liu, Y., Sun, L.G., Xie, Q.J., and Yao, S.Z., J. Electroanal. Chem., 2013, no. 70, p. 19.

    Article  Google Scholar 

  31. Bonastre, A.M. and Bartlett, P.N., Anal. Chim. Acta, 2010, no. 676, p. 1.

    Article  CAS  Google Scholar 

  32. Manivel, P., Dhakshnamoorthy, M., Balamurugan, A., Ponpandian, N., Mangalaraj, D., and Viswanathan, C., RSC Adv., 2013, no. 3, p. 14428.

    Article  CAS  Google Scholar 

  33. Hirose, J., Inoue, K., Sakuragi, H., Kikkawa, M., Minakami, M., Morikawa, T., Iwamoto, H., and Hiromi, K., Inorg. Chim. Acta, 1998, no. 273, p. 204.

    Article  CAS  Google Scholar 

  34. Xu, F., Berka, R.M., Wahleithner, J.A., Nelson, B.A., Shuster, J.R., Brown, S.H., Palmer, A.E., and Solomon, E.I., Biochem. J., 1998, no. 334, p. 63.

    Article  CAS  Google Scholar 

  35. Salaj-Kosla, U., Pöller, S., Beyl, Y., Scanlon, M.D., Beloshapkin, S., Shleev, S., Schuhmann, W., and Magner, E., Electrochem. Commun., 2012, no. 16, p. 92.

    Article  CAS  Google Scholar 

  36. Cui, C.Q. and Lee, J.Y., J. Electroanal. Chem., 1994, no. 367, p. 205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Pankratov.

Additional information

Original Russian Text © Yu.M. Parunova, S.O. Bushnev, E. Gonzalez-Arribas, P. Falkman, A.V. Lipkin, V.O. Popov, S.V. Shleev, D.V. Pankratov, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 12, pp. 1305–1311.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parunova, Y.M., Bushnev, S.O., Gonzalez-Arribas, E. et al. Potentially implantable biocathode with the function of charge accumulation based on nanocomposite of polyaniline/carbon nanotubes. Russ J Electrochem 52, 1166–1171 (2016). https://doi.org/10.1134/S1023193516120119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516120119

Keywords

Navigation